Xinxin Li , Lanyu Li , Alessia Manassero , Astrid Müller , Sumitha K. Reddy , Mirjam A. Kabel , Ronald P. de Vries , Peicheng Sun
{"title":"Synergy of GH67 and GH115 α-1,2-glucuronidases with Penicillium subrubescens endoxylanases to stimulate xylooligosaccharide production","authors":"Xinxin Li , Lanyu Li , Alessia Manassero , Astrid Müller , Sumitha K. Reddy , Mirjam A. Kabel , Ronald P. de Vries , Peicheng Sun","doi":"10.1016/j.enzmictec.2025.110629","DOIUrl":null,"url":null,"abstract":"<div><div>A primary substitution of the plant cell wall hemicellulosic polysaccharide xylan is (4-<em>O</em>-methyl-)<span>d</span>-glucuronic acid, which hinders the endoxylanases (XLNs) degradation of xylan for the production of valuable xylooligosaccharides (XOS). In this context, α-1,2-glucuronidase (AGU) plays a critical role in hydrolyzing the α-(1→2)-glycosidic linkages between 4-<em>O</em>-methyl-<span>d</span>-glucuronic acid and xylosyl residues in xylan, thereby enhancing XOS production by XLNs. However, AGUs have been relatively poorly studied, and insufficient and incomplete data on their biochemical properties, substrate specificity, and product profiling has limited their application. Here, we cloned, heterologously produced, purified and functionally characterized an AGU from <em>Aspergillus niger</em> (<em>An</em>AguA) and another AGU from <em>Penicillium subrubescens</em> (<em>Ps</em>AguB), belonging to Glycoside Hydrolase family 67 (GH67) and 115 (GH115), respectively, in the Carbohydrate-Active enZyme database. Results showed that neither AGU released 4-<em>O</em>-methyl-<span>d</span>-glucuronic acid from polymeric beech wood glucuronoxylan (BeWX). However, we found that from BeWX pre-digested with GH10 or GH11 XLNs from <em>P. subrubescens</em> (<em>Ps</em>XlnA and <em>Ps</em>XlnF, respectively), <em>An</em>AguA released 4-<em>O</em>-methyl-<span>d</span>-glucuronic acid only from the non-reducing end of glucuronoxylan oligosaccharide, whereas <em>Ps</em>AguB released 4-<em>O</em>-methyl-<span>d</span>-glucuronic acid from glucuronoxylan oligosaccharides regardless of the xylosyl substitution position. Furthermore, we demonstrated that enhancement of XOS release by adding AGUs to various combinations of GH10 (<em>Ps</em>XlnA–C) and GH11 (<em>Ps</em>XlnD–F, <em>Ps</em>XlnH–I) XLNs from <em>P. subrubescens</em> varied based on the AGU-XLN combination. The combination of <em>An</em>AguA with <em>Ps</em>XlnA was the most effective, achieving at least a 3-fold increase in the release of XOS with a degree of polymerization of 5–7 compared to using <em>Ps</em>XlnA alone.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"187 ","pages":"Article 110629"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000493","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A primary substitution of the plant cell wall hemicellulosic polysaccharide xylan is (4-O-methyl-)d-glucuronic acid, which hinders the endoxylanases (XLNs) degradation of xylan for the production of valuable xylooligosaccharides (XOS). In this context, α-1,2-glucuronidase (AGU) plays a critical role in hydrolyzing the α-(1→2)-glycosidic linkages between 4-O-methyl-d-glucuronic acid and xylosyl residues in xylan, thereby enhancing XOS production by XLNs. However, AGUs have been relatively poorly studied, and insufficient and incomplete data on their biochemical properties, substrate specificity, and product profiling has limited their application. Here, we cloned, heterologously produced, purified and functionally characterized an AGU from Aspergillus niger (AnAguA) and another AGU from Penicillium subrubescens (PsAguB), belonging to Glycoside Hydrolase family 67 (GH67) and 115 (GH115), respectively, in the Carbohydrate-Active enZyme database. Results showed that neither AGU released 4-O-methyl-d-glucuronic acid from polymeric beech wood glucuronoxylan (BeWX). However, we found that from BeWX pre-digested with GH10 or GH11 XLNs from P. subrubescens (PsXlnA and PsXlnF, respectively), AnAguA released 4-O-methyl-d-glucuronic acid only from the non-reducing end of glucuronoxylan oligosaccharide, whereas PsAguB released 4-O-methyl-d-glucuronic acid from glucuronoxylan oligosaccharides regardless of the xylosyl substitution position. Furthermore, we demonstrated that enhancement of XOS release by adding AGUs to various combinations of GH10 (PsXlnA–C) and GH11 (PsXlnD–F, PsXlnH–I) XLNs from P. subrubescens varied based on the AGU-XLN combination. The combination of AnAguA with PsXlnA was the most effective, achieving at least a 3-fold increase in the release of XOS with a degree of polymerization of 5–7 compared to using PsXlnA alone.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.