A metabolic-engineering framework approach via fed-batch fermentation for enhancing glucaric acid production in Komagataella phaffii

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Enzyme and Microbial Technology Pub Date : 2025-03-12 DOI:10.1016/j.enzmictec.2025.110627
Jayachandran Krishna , Kabilan Subash Chandra Bose , Sindhu Varadharaj , Meenakshisundaram Sankaranarayanan
{"title":"A metabolic-engineering framework approach via fed-batch fermentation for enhancing glucaric acid production in Komagataella phaffii","authors":"Jayachandran Krishna ,&nbsp;Kabilan Subash Chandra Bose ,&nbsp;Sindhu Varadharaj ,&nbsp;Meenakshisundaram Sankaranarayanan","doi":"10.1016/j.enzmictec.2025.110627","DOIUrl":null,"url":null,"abstract":"<div><div>Glucaric acid (D-saccharic acid) is an organic compound belonging to glucuronic acid derivatives, whose commercial synthesis involves the use of hazardous solvents. Biosynthetic production in <em>Saccharomyces cerevisiae</em> has limitations, such as ethanolic fermentation, redox strategy limitations, and low pH toxicity. <em>Komagataella phaffii</em> (<em>K. phaffii</em>) formly known <em>Pichia pastoris</em>, an alternative and robust engineerable organism, is a promising biotransformation agent for glucaric acid production. However, <em>K. phaffii</em> lacks native biosynthetic pathways for glucaric acid synthesis at the industrial scale. There is no proof-of-concept glucaric acid production system. Therefore, gene expression profiling-based metabolic engineering of glucaric acid producing gene cassette was performed using in-fusion cloning. Product production was enhanced using fed-batch fermentation of the key metabolite, myo-inositol; this improved the yield of glucaric acid. The expression was optimized through cofactor recycling and codon optimization for the UDH gene. Fed-batch fermentation with mixed supplementation (Myo-inositol + Monosodium glutamate) as substrate in engineered <em>K. phaffii</em> (X33-GA) enhanced glucaric acid synthesis to 17.6 g/L. In addition, we present simple HPLC and LC-MS techniques for quantifying glucaric acid and its precursors in the fermentation samples. The proof-of-concept results from both shake flask and bioreactor studies provide a unique perspective on sustainable, cost-effective, and green technological alternatives for glucaric acid synthesis.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"187 ","pages":"Article 110627"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014102292500047X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glucaric acid (D-saccharic acid) is an organic compound belonging to glucuronic acid derivatives, whose commercial synthesis involves the use of hazardous solvents. Biosynthetic production in Saccharomyces cerevisiae has limitations, such as ethanolic fermentation, redox strategy limitations, and low pH toxicity. Komagataella phaffii (K. phaffii) formly known Pichia pastoris, an alternative and robust engineerable organism, is a promising biotransformation agent for glucaric acid production. However, K. phaffii lacks native biosynthetic pathways for glucaric acid synthesis at the industrial scale. There is no proof-of-concept glucaric acid production system. Therefore, gene expression profiling-based metabolic engineering of glucaric acid producing gene cassette was performed using in-fusion cloning. Product production was enhanced using fed-batch fermentation of the key metabolite, myo-inositol; this improved the yield of glucaric acid. The expression was optimized through cofactor recycling and codon optimization for the UDH gene. Fed-batch fermentation with mixed supplementation (Myo-inositol + Monosodium glutamate) as substrate in engineered K. phaffii (X33-GA) enhanced glucaric acid synthesis to 17.6 g/L. In addition, we present simple HPLC and LC-MS techniques for quantifying glucaric acid and its precursors in the fermentation samples. The proof-of-concept results from both shake flask and bioreactor studies provide a unique perspective on sustainable, cost-effective, and green technological alternatives for glucaric acid synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
期刊最新文献
A novel GH12 xyloglucanase from the white rot fungus Abortiporus biennis, synergistically enhances lignocellulose saccharification by commercial cellulases A metabolic-engineering framework approach via fed-batch fermentation for enhancing glucaric acid production in Komagataella phaffii Synergy of GH67 and GH115 α-1,2-glucuronidases with Penicillium subrubescens endoxylanases to stimulate xylooligosaccharide production Editorial Board Acetic acid production from corn straw via enzymatic degradation using putative acetyl esterase from the metagenome assembled genome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1