{"title":"Numerical and experimental investigation into the energy distribution in powder mixed EDM","authors":"Deepti Ranjan Sahu, Amitava Mandal, Rakesh Kumar","doi":"10.1016/j.cirpj.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the discharge energy distribution during Powder Mixed Electrical Discharge Machining (PMEDM) at different values of pulse duration, peak current and powder concentration. A finite element method (FEM) based numerical model has been developed to estimate the power distribution factor by reverse simulation. The developed model has been used for determining the fraction of discharge energy distributed to the electrodes. The model and experimental values of total fraction of discharge energy are in close agreement with the error varying between 0.47 % to 14.04 % for tool and 0.82 % to 9.82 % for workpiece. Parametric influence on components of discharge energy has also been discussed.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 229-245"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724000695","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the discharge energy distribution during Powder Mixed Electrical Discharge Machining (PMEDM) at different values of pulse duration, peak current and powder concentration. A finite element method (FEM) based numerical model has been developed to estimate the power distribution factor by reverse simulation. The developed model has been used for determining the fraction of discharge energy distributed to the electrodes. The model and experimental values of total fraction of discharge energy are in close agreement with the error varying between 0.47 % to 14.04 % for tool and 0.82 % to 9.82 % for workpiece. Parametric influence on components of discharge energy has also been discussed.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.