Hydrogeomorphology and recharge mechanism of a coastal aquifer in tectonic-controlled watersheds: A multi-proxy approach based on remote sensing and environmental isotopes
Mohamed Yousif , Robert van Geldern , Olaf Bubenzer
{"title":"Hydrogeomorphology and recharge mechanism of a coastal aquifer in tectonic-controlled watersheds: A multi-proxy approach based on remote sensing and environmental isotopes","authors":"Mohamed Yousif , Robert van Geldern , Olaf Bubenzer","doi":"10.1016/j.gsd.2024.101237","DOIUrl":null,"url":null,"abstract":"<div><p>Coastal aquifers worldwide can be considered an essential water source required for preservation of the coastal ecosystems. However, these aquifers are vulnerable to seawater intrusions and over-pumping due to their proximity to the sea and human activities, respectively. Therefore, the investigation of recharge mechanism has special importance in the regions of tectonic rift activities where they exhibit complex geological structures and hydrogeological characteristics. In the current research, an integrated approach of remote sensing and environmental isotopes together with field investigation and subsurface datasets (aeromagnetic, gravity and well logs) are employed to identify the nature and factors affecting groundwater recharge of the Miocene coastal aquifer along the Red Sea-Gulf of Suez western margin (continental rift basin). The research findings reveal that: (1) The coastal Miocene aquifer consists of both clastic (sandstone, sand and gravels) and carbonate rocks (limestone and dolomite) with subsurface thickness ranges between 100 and 200 m. (2) Its groundwater shows contrast salinity values (expressed by total dissolved solids, TDS) between 2755 and 10,996 mg/l, due to the variation in recharge rates and the lithologic dissimilarity of the water bearing formations. (3) The environmental isotopes indicate that the Miocene groundwater has a mixed isotopic signature between modern meteoric (rainfall) and fossil waters. (4) The isotopic data of the Miocene aquifer and the enriched Gulf of Suez verifies that no seawater intrusions are affecting this aquifer with existing hydraulic barriers (clogged/sealed faults or impermeable massive blocks). (5) The hydrogeomorphological investigations, aeromagnetic and gravity data reveal an existence of two morphotectonic depressions (water collectors) which have paleo and recent recharge opportunities for the subsurface sedimentary layers (2–4 km thick). From the applied viewpoint, these two depressions have potential prospects for future groundwater exploration, which has significant impact on food security and land reclamation.</p></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24001607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal aquifers worldwide can be considered an essential water source required for preservation of the coastal ecosystems. However, these aquifers are vulnerable to seawater intrusions and over-pumping due to their proximity to the sea and human activities, respectively. Therefore, the investigation of recharge mechanism has special importance in the regions of tectonic rift activities where they exhibit complex geological structures and hydrogeological characteristics. In the current research, an integrated approach of remote sensing and environmental isotopes together with field investigation and subsurface datasets (aeromagnetic, gravity and well logs) are employed to identify the nature and factors affecting groundwater recharge of the Miocene coastal aquifer along the Red Sea-Gulf of Suez western margin (continental rift basin). The research findings reveal that: (1) The coastal Miocene aquifer consists of both clastic (sandstone, sand and gravels) and carbonate rocks (limestone and dolomite) with subsurface thickness ranges between 100 and 200 m. (2) Its groundwater shows contrast salinity values (expressed by total dissolved solids, TDS) between 2755 and 10,996 mg/l, due to the variation in recharge rates and the lithologic dissimilarity of the water bearing formations. (3) The environmental isotopes indicate that the Miocene groundwater has a mixed isotopic signature between modern meteoric (rainfall) and fossil waters. (4) The isotopic data of the Miocene aquifer and the enriched Gulf of Suez verifies that no seawater intrusions are affecting this aquifer with existing hydraulic barriers (clogged/sealed faults or impermeable massive blocks). (5) The hydrogeomorphological investigations, aeromagnetic and gravity data reveal an existence of two morphotectonic depressions (water collectors) which have paleo and recent recharge opportunities for the subsurface sedimentary layers (2–4 km thick). From the applied viewpoint, these two depressions have potential prospects for future groundwater exploration, which has significant impact on food security and land reclamation.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.