{"title":"MICAnet: A Deep Convolutional Neural Network for mineral identification on Martian surface","authors":"Priyanka Kumari , Sampriti Soor , Amba Shetty , Shashidhar G. Koolagudi","doi":"10.1016/j.ejrs.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Mineral identification plays a vital role in understanding the diversity and past habitability of the Martian surface. Mineral mapping by the traditional manual method is time-consuming and the unavailability of ground truth data limited the research on building supervised learning models. To address this issue an augmentation process is already proposed in the literature that generates training data replicating the spectra in the MICA (Minerals Identified in CRISM Analysis) spectral library while preserving absorption signatures and introducing variability. This study introduces MICAnet, a specialized Deep Convolutional Neural Network (DCNN) architecture for mineral identification using the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral data. MICAnet is inspired by the Inception-v3 and InceptionResNet-v1 architectures, but it is tailored with 1-dimensional convolutions for processing the spectra at the pixel level of a hyperspectral image. To the best of the authors’ knowledge, this is the first DCNN architecture solely dedicated to mineral identification on the Martian surface. The model is evaluated by its matching with a TRDR (Targeted Reduced Data Record) dataset obtained using a hierarchical Bayesian model. The results demonstrate an impressive f-score of at least .77 among different mineral groups in the MICA library, which is on par with or better than the unsupervised models previously applied to this objective.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 3","pages":"Pages 501-507"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000474/pdfft?md5=571ed6384d90f85a6a7247fab174e509&pid=1-s2.0-S1110982324000474-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000474","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mineral identification plays a vital role in understanding the diversity and past habitability of the Martian surface. Mineral mapping by the traditional manual method is time-consuming and the unavailability of ground truth data limited the research on building supervised learning models. To address this issue an augmentation process is already proposed in the literature that generates training data replicating the spectra in the MICA (Minerals Identified in CRISM Analysis) spectral library while preserving absorption signatures and introducing variability. This study introduces MICAnet, a specialized Deep Convolutional Neural Network (DCNN) architecture for mineral identification using the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral data. MICAnet is inspired by the Inception-v3 and InceptionResNet-v1 architectures, but it is tailored with 1-dimensional convolutions for processing the spectra at the pixel level of a hyperspectral image. To the best of the authors’ knowledge, this is the first DCNN architecture solely dedicated to mineral identification on the Martian surface. The model is evaluated by its matching with a TRDR (Targeted Reduced Data Record) dataset obtained using a hierarchical Bayesian model. The results demonstrate an impressive f-score of at least .77 among different mineral groups in the MICA library, which is on par with or better than the unsupervised models previously applied to this objective.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.