A Low-Frequency High-Performance Harvesting System With Combined Cantilever Beam

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-04-29 DOI:10.1109/JSEN.2024.3392588
Shuting Tang;Chaoqun Ma;Debo Wang
{"title":"A Low-Frequency High-Performance Harvesting System With Combined Cantilever Beam","authors":"Shuting Tang;Chaoqun Ma;Debo Wang","doi":"10.1109/JSEN.2024.3392588","DOIUrl":null,"url":null,"abstract":"In order to achieve highly efficient energy harvesting in low-frequency vibration environment, a combined cantilever piezoelectric energy harvester (CCPEH) is studied in this work. The design uses a circular cantilever beam to reduce the resonant frequency and achieve multidirectional energy harvesting. The trapezoidal cantilever beam and arc spiral cantilever beam are coupled to each other to improve the energy harvester efficiency per unit volume. The relationship of the arc with a radial pitch of circular cantilever beam is studied. The piezoelectric energy harvesting system with different combined cantilever beam structures is fabricated, and the output performance of those energy harvesting systems is measured and compared. The measured results show that the CCPEH with an arc of \n<inline-formula> <tex-math>$4\\pi $ </tex-math></inline-formula>\n and a radial pitch of 8 mm can achieve multidirectional harvesting and improve the energy harvesting efficiency per unit volume with a resonant frequency of 39 Hz, an output voltage of 46.4 V, and an output power of \n<inline-formula> <tex-math>$2337 \\, \\mu $ </tex-math></inline-formula>\nW. This structure of piezoelectric energy harvester (PEH) can be effectively applied in wireless sensors and microelectronic devices.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10510207/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve highly efficient energy harvesting in low-frequency vibration environment, a combined cantilever piezoelectric energy harvester (CCPEH) is studied in this work. The design uses a circular cantilever beam to reduce the resonant frequency and achieve multidirectional energy harvesting. The trapezoidal cantilever beam and arc spiral cantilever beam are coupled to each other to improve the energy harvester efficiency per unit volume. The relationship of the arc with a radial pitch of circular cantilever beam is studied. The piezoelectric energy harvesting system with different combined cantilever beam structures is fabricated, and the output performance of those energy harvesting systems is measured and compared. The measured results show that the CCPEH with an arc of $4\pi $ and a radial pitch of 8 mm can achieve multidirectional harvesting and improve the energy harvesting efficiency per unit volume with a resonant frequency of 39 Hz, an output voltage of 46.4 V, and an output power of $2337 \, \mu $ W. This structure of piezoelectric energy harvester (PEH) can be effectively applied in wireless sensors and microelectronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带组合悬臂梁的低频高性能采集系统
为了在低频振动环境中实现高效能量收集,本研究对一种组合式悬臂压电能量收集器(CCPEH)进行了研究。该设计使用圆形悬臂梁来降低谐振频率,实现多向能量采集。梯形悬臂梁和弧形螺旋悬臂梁相互耦合,以提高单位体积能量收集器的效率。研究了圆弧与圆形悬臂梁径向间距的关系。制作了具有不同组合悬臂梁结构的压电能量收集系统,并对这些能量收集系统的输出性能进行了测量和比较。测量结果表明,弧度为 $4\pi $、径向间距为 8 mm 的 CCPEH 可以实现多向能量收集,提高单位体积的能量收集效率,谐振频率为 39 Hz,输出电压为 46.4 V,输出功率为 2337 \, \mu $ W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
Fault Diagnosis of Circuit Breakers Based on MCF-RPs and Deep Residual Knowledge Incremental under Distillation Learning Remaining Useful Life Prediction of Bearings Using Reverse Attention Graph Convolution Network with Residual Convolution Transformer Star Spot Extraction for Multi-FOV Star Sensors Under Extremely High Dynamic Conditions An Ultra-miniaturized Inflammation Monitoring Platform Implemented by Long Afterglow Lat-eral Flow Immunoassay Angle-Agnostic Radio Frequency Sensing Integrated into 5G-NR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1