{"title":"Assessing the Impacts of Rainstorm and Flood Disaster for Improving the Resilience of Transportation System","authors":"Zhenzhen Yang","doi":"10.1155/2024/6687438","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Rainstorm and the induced flood disaster often cause serious damage to transportation system, resulting in the loss of life and property. To improve the resilience of transportation system, this study proposes a framework for assessing the impacts of rainstorm and flood disaster on road network based on GPS data. The change ratio of traffic flow and congestion index are used to evaluate the disrupted and detour road sections caused by rainstorm. A method based on the change of traffic flow compared to the normal circumstances is proposed to identify the flood-damaged road sections. A case study in Beijing verifies the feasibility and practicality of the proposed framework, which can effectively assess the impacts of rainstorm from multiple spatial and temporal dimensions, identify the flood-damaged road sections, and supplement existing research. Research findings can provide scientific basis for the emergency management departments to accurately identify the roads affected by rainstorm and improve the resilience of transportation system.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6687438","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6687438","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Rainstorm and the induced flood disaster often cause serious damage to transportation system, resulting in the loss of life and property. To improve the resilience of transportation system, this study proposes a framework for assessing the impacts of rainstorm and flood disaster on road network based on GPS data. The change ratio of traffic flow and congestion index are used to evaluate the disrupted and detour road sections caused by rainstorm. A method based on the change of traffic flow compared to the normal circumstances is proposed to identify the flood-damaged road sections. A case study in Beijing verifies the feasibility and practicality of the proposed framework, which can effectively assess the impacts of rainstorm from multiple spatial and temporal dimensions, identify the flood-damaged road sections, and supplement existing research. Research findings can provide scientific basis for the emergency management departments to accurately identify the roads affected by rainstorm and improve the resilience of transportation system.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.