Berthold Pemp, Stefan Palkovits, Stefan Sacu, Doreen Schmidl, Gerhard Garhöfer, Leopold Schmetterer, Ursula Schmidt-Erfurth
{"title":"Associations of retinal neurovascular dysfunction with inner retinal layer thickness in non-proliferative diabetic retinopathy.","authors":"Berthold Pemp, Stefan Palkovits, Stefan Sacu, Doreen Schmidl, Gerhard Garhöfer, Leopold Schmetterer, Ursula Schmidt-Erfurth","doi":"10.1007/s00417-024-06552-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Neurovascular coupling impairment and inner retinal layer thinning are early detectable retinal changes in diabetes, and both worsen during progression of diabetic retinopathy (DR). However, direct interactions between these features have not been investigated so far. Therefore, we aimed to analyze associations between the retinal functional hyperemic response to light stimulation and the thickness of individual neuroretinal layers in eyes with early non-proliferative DR.</p><p><strong>Methods: </strong>Thirty patients with type 1 diabetes featuring mild (n = 15) or moderate (n = 15) non-proliferative DR and 14 healthy subjects were included in this cross-sectional study. Retinal vessel diameters were measured before and during illumination with flickering light using a dynamic vessel analyzer. Individual layer thickness in the macula was analyzed from spectral domain optical coherence tomography.</p><p><strong>Results: </strong>Flicker light-induced vessel dilation was significantly reduced in patients compared to healthy controls (veins: 3.0% vs. 6.1%, p < 0.001; arteries: 1.3% vs. 5.1%, p = 0.005). Univariately, the response in retinal veins of diabetes patients correlated significantly with ganglion cell layer (GCL) thickness (r = 0.46, p = 0.010), and negatively with hemoglobin A1c (HbA1c) levels (r=-0.41, p = 0.023) and age (r=-0.38, p = 0.037), but not with baseline diameters, glucose levels, or diabetes duration. In a multiple regression model only GCL thickness (p = 0.017, β = 0.42) and HbA1c (p = 0.045, β=-0.35) remained significantly associated with the vascular flicker light response.</p><p><strong>Conclusion: </strong>The results indicate that thinner GCL and worse glycemic control both contribute to reduced retinal neurovascular coupling in patients with clinical signs of DR. Progression of neurovascular dysfunction in DR might be related to structural degeneration of the neurovascular complex in the inner retina.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":"3761-3771"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-024-06552-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Neurovascular coupling impairment and inner retinal layer thinning are early detectable retinal changes in diabetes, and both worsen during progression of diabetic retinopathy (DR). However, direct interactions between these features have not been investigated so far. Therefore, we aimed to analyze associations between the retinal functional hyperemic response to light stimulation and the thickness of individual neuroretinal layers in eyes with early non-proliferative DR.
Methods: Thirty patients with type 1 diabetes featuring mild (n = 15) or moderate (n = 15) non-proliferative DR and 14 healthy subjects were included in this cross-sectional study. Retinal vessel diameters were measured before and during illumination with flickering light using a dynamic vessel analyzer. Individual layer thickness in the macula was analyzed from spectral domain optical coherence tomography.
Results: Flicker light-induced vessel dilation was significantly reduced in patients compared to healthy controls (veins: 3.0% vs. 6.1%, p < 0.001; arteries: 1.3% vs. 5.1%, p = 0.005). Univariately, the response in retinal veins of diabetes patients correlated significantly with ganglion cell layer (GCL) thickness (r = 0.46, p = 0.010), and negatively with hemoglobin A1c (HbA1c) levels (r=-0.41, p = 0.023) and age (r=-0.38, p = 0.037), but not with baseline diameters, glucose levels, or diabetes duration. In a multiple regression model only GCL thickness (p = 0.017, β = 0.42) and HbA1c (p = 0.045, β=-0.35) remained significantly associated with the vascular flicker light response.
Conclusion: The results indicate that thinner GCL and worse glycemic control both contribute to reduced retinal neurovascular coupling in patients with clinical signs of DR. Progression of neurovascular dysfunction in DR might be related to structural degeneration of the neurovascular complex in the inner retina.
期刊介绍:
Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.