Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases.

Varun Chaudhary, Florie Mar, Manuel J Amador, Andrew Chang, Kara Gibson, Antonia M Joussen, Judy E Kim, Junyeop Lee, Philippe Margaron, Insaf Saffar, David Wong, Charles Wykoff, Srinivas Sadda
{"title":"Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases.","authors":"Varun Chaudhary, Florie Mar, Manuel J Amador, Andrew Chang, Kara Gibson, Antonia M Joussen, Judy E Kim, Junyeop Lee, Philippe Margaron, Insaf Saffar, David Wong, Charles Wykoff, Srinivas Sadda","doi":"10.1007/s00417-024-06695-4","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-vascular endothelial growth factor (VEGF) therapies have transformed the treatment of retinal diseases. However, VEGF signaling is only one component of the complex, multifactorial pathophysiology of retinal diseases, and many patients have residual disease activity despite ongoing anti-VEGF treatment. The angiopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor receptor-2 (Ang/Tie2) signaling pathway is critical to endothelial cell homeostasis, survival, integrity, and vascular stability. Ang-2 can interfere with Ang-1/Tie2 signaling and is increased in several retinal diseases. Lack of Tie2 signaling due to elevated Ang-2 levels drives vascular instability through pericyte dropout, neovascularization, vascular leakage, inflammation, and fibrosis. Although Ang-2 and VEGF can synergistically promote vascular instability and neovascularization, Ang-2 may also mediate vascular instability independently of VEGF. Faricimab is a bispecific antibody designed for intraocular use that inhibits two distinct pathways via Ang-2 and VEGF-A blockade. Clinical biomarkers of vascular instability are important for evaluating disease control and subsequent treatment decisions. These biomarkers include measurement/evaluation with optical coherence tomography (OCT) of intraretinal fluid, subretinal fluid, central subfield thickness, and pigment epithelial detachments (PEDs), and fluorescein angiography imaging of macular leakage and PEDs. Hyperreflective foci (HRF), thought to be representative of activated microglia, indicating an inflammatory microenvironment, and epiretinal membranes (ERMs), a marker for retinal fibrotic proliferation in diabetic macular edema (DME), are both also identified using OCT. Here we summarize data (secondary endpoint and prespecified exploratory analyses as well as post hoc analyses) from six Phase III trials suggest that dual therapy Ang-2/VEGF-A inhibition with faricimab (6 mg) has a greater effect on reducing/resolving biomarkers of vascular instability than aflibercept (2 mg), by both controlling neovascularization and vascular leakage (with resultant resolution of exudation associated with DME, neovascular age-related macular degeneration, and retinal vein occlusion), as well as by targeting inflammation (reduction of HRF in DME) and retinal fibrotic proliferation (reducing the risk of ERMs in eyes with DME). Modulation of both the Ang-2 and VEGF-A pathways with faricimab may therefore provide greater disease control than anti-VEGF monotherapy, potentially leading to extended treatment durability and improved long-term outcomes.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-024-06695-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anti-vascular endothelial growth factor (VEGF) therapies have transformed the treatment of retinal diseases. However, VEGF signaling is only one component of the complex, multifactorial pathophysiology of retinal diseases, and many patients have residual disease activity despite ongoing anti-VEGF treatment. The angiopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor receptor-2 (Ang/Tie2) signaling pathway is critical to endothelial cell homeostasis, survival, integrity, and vascular stability. Ang-2 can interfere with Ang-1/Tie2 signaling and is increased in several retinal diseases. Lack of Tie2 signaling due to elevated Ang-2 levels drives vascular instability through pericyte dropout, neovascularization, vascular leakage, inflammation, and fibrosis. Although Ang-2 and VEGF can synergistically promote vascular instability and neovascularization, Ang-2 may also mediate vascular instability independently of VEGF. Faricimab is a bispecific antibody designed for intraocular use that inhibits two distinct pathways via Ang-2 and VEGF-A blockade. Clinical biomarkers of vascular instability are important for evaluating disease control and subsequent treatment decisions. These biomarkers include measurement/evaluation with optical coherence tomography (OCT) of intraretinal fluid, subretinal fluid, central subfield thickness, and pigment epithelial detachments (PEDs), and fluorescein angiography imaging of macular leakage and PEDs. Hyperreflective foci (HRF), thought to be representative of activated microglia, indicating an inflammatory microenvironment, and epiretinal membranes (ERMs), a marker for retinal fibrotic proliferation in diabetic macular edema (DME), are both also identified using OCT. Here we summarize data (secondary endpoint and prespecified exploratory analyses as well as post hoc analyses) from six Phase III trials suggest that dual therapy Ang-2/VEGF-A inhibition with faricimab (6 mg) has a greater effect on reducing/resolving biomarkers of vascular instability than aflibercept (2 mg), by both controlling neovascularization and vascular leakage (with resultant resolution of exudation associated with DME, neovascular age-related macular degeneration, and retinal vein occlusion), as well as by targeting inflammation (reduction of HRF in DME) and retinal fibrotic proliferation (reducing the risk of ERMs in eyes with DME). Modulation of both the Ang-2 and VEGF-A pathways with faricimab may therefore provide greater disease control than anti-VEGF monotherapy, potentially leading to extended treatment durability and improved long-term outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
7.40%
发文量
398
审稿时长
3 months
期刊介绍: Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.
期刊最新文献
Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases. Evaluating anterior segment stability and corneal endothelium after prolene gonioscopy assisted transluminal trabeculotomy (GATT) in open-angle glaucoma. Effects of ambient atmospheric pressure on intraocular pressure measured using a Goldman applanation tonometer in normal eyes under ordinary conditions. Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model. Primary angle-closed diseases recognition through artificial intelligence-based anterior segment-optical coherence tomography imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1