Sonia Cambiaso, Fabio Rasera, Antonio Tinti, Davide Bochicchio, Yaroslav Grosu, Giulia Rossi, Alberto Giacomello
{"title":"Local grafting heterogeneities control water intrusion and extrusion in nanopores","authors":"Sonia Cambiaso, Fabio Rasera, Antonio Tinti, Davide Bochicchio, Yaroslav Grosu, Giulia Rossi, Alberto Giacomello","doi":"10.1038/s43246-024-00531-2","DOIUrl":null,"url":null,"abstract":"Hydrophobic nanoporous materials can only be intruded by water forcibly, typically increasing pressure. For some materials, water extrudes when the pressure is lowered again. Controlling intrusion/extrusion hysteresis is central in technological applications, including energy materials, high performance liquid chromatography, and liquid porosimetry, but its molecular determinants are still elusive. Here, we consider water intrusion/extrusion in mesoporous materials grafted with hydrophobic chains, showing that intrusion/extrusion is ruled by microscopic heterogeneities in the grafting. For example, intrusion/extrusion pressures can vary more than 60 MPa depending on the chain length and grafting density. Coarse-grained molecular dynamics simulations reveal that local changes in radius and contact angle produced by grafting heterogeneities can pin the water interface during intrusion or facilitate vapor bubble nucleation in extrusion. These microscopic insights can directly impact the design of energy materials and chromatography columns, as well as the interpretation of porosimetry results. Water intrusion/extrusion in nanoporous materials is a key step in a number of applications. Here, it is found that intrusion/extrusion pressure in mesoporous materials grafted with hydrophobic chains is controlled by local grafting heteregoneities and can vary by as much as 60 MPa.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00531-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00531-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrophobic nanoporous materials can only be intruded by water forcibly, typically increasing pressure. For some materials, water extrudes when the pressure is lowered again. Controlling intrusion/extrusion hysteresis is central in technological applications, including energy materials, high performance liquid chromatography, and liquid porosimetry, but its molecular determinants are still elusive. Here, we consider water intrusion/extrusion in mesoporous materials grafted with hydrophobic chains, showing that intrusion/extrusion is ruled by microscopic heterogeneities in the grafting. For example, intrusion/extrusion pressures can vary more than 60 MPa depending on the chain length and grafting density. Coarse-grained molecular dynamics simulations reveal that local changes in radius and contact angle produced by grafting heterogeneities can pin the water interface during intrusion or facilitate vapor bubble nucleation in extrusion. These microscopic insights can directly impact the design of energy materials and chromatography columns, as well as the interpretation of porosimetry results. Water intrusion/extrusion in nanoporous materials is a key step in a number of applications. Here, it is found that intrusion/extrusion pressure in mesoporous materials grafted with hydrophobic chains is controlled by local grafting heteregoneities and can vary by as much as 60 MPa.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.