Ya Lu, Yuanyuan Chen, Haoyu Sun, Fang Deng, Changtong Mei, Xinwu Xu, Qinglin Wu, Huining Xiao, Yiying Yue, Jingquan Han
{"title":"Resilient, environment tolerant and biocompatible electroluminescent devices with enhanced luminance based on compliant and self-adhesive electrodes","authors":"Ya Lu, Yuanyuan Chen, Haoyu Sun, Fang Deng, Changtong Mei, Xinwu Xu, Qinglin Wu, Huining Xiao, Yiying Yue, Jingquan Han","doi":"10.1038/s41528-024-00322-2","DOIUrl":null,"url":null,"abstract":"Electroluminescent (EL) devices are of great significance for expanding the application range of optoelectronics. However, the realization of EL devices with environment-tolerance, stretchability, mechanical cycling stability, self-adhesion, biocompatibility, and high dielectric constant still remains a challenge. Herein, a type of EL device with enhanced comprehensive performances composing of a chlorinated barium titanate/phosphor/polydimethylsiloxane (Cl-BT/phosphor/PDMS) luminescent layer sandwiched between two silver nanowire-cellulose nanocrystal with II crystalline allomorph/Triton X-100 modified polydimethylsiloxane (AgNW-CNC II/TX-PDMS) electrodes fabricated through a full solution-processing strategy is proposed. Environmentally-friendly CNC II with high transmittance acts as an antioxidant, dispersant and film-former for AgNWs. The hydrophilic modification of TX to PDMS imparts the electrodes with self-adhesion, high stretchability, as well as strong interfacial bonding between TX-PDMS and AgNW-CNC II. The electrodes achieve skin-like modulus by adjusting TX content, endowing the EL devices with a high compliance (186 kPa of Young’s modulus). The luminescent layer with Cl-BT exhibits a high dielectric constant (19) and luminance (up to 72 cd m−2). The assembled EL device with excellent cyclic stability (luminance retention 85% after 400 cycles), durability (luminance retention >94% after 400 min) and stretchability (88% luminance at 200% strain) can work properly at broad temperatures (−20 ~ 70 °C) and underwater. This biocompatible and self-adhesive EL device demonstrates great potential for implantable biomedical devices and wearable displays under harsh environments.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-13"},"PeriodicalIF":12.3000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00322-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00322-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electroluminescent (EL) devices are of great significance for expanding the application range of optoelectronics. However, the realization of EL devices with environment-tolerance, stretchability, mechanical cycling stability, self-adhesion, biocompatibility, and high dielectric constant still remains a challenge. Herein, a type of EL device with enhanced comprehensive performances composing of a chlorinated barium titanate/phosphor/polydimethylsiloxane (Cl-BT/phosphor/PDMS) luminescent layer sandwiched between two silver nanowire-cellulose nanocrystal with II crystalline allomorph/Triton X-100 modified polydimethylsiloxane (AgNW-CNC II/TX-PDMS) electrodes fabricated through a full solution-processing strategy is proposed. Environmentally-friendly CNC II with high transmittance acts as an antioxidant, dispersant and film-former for AgNWs. The hydrophilic modification of TX to PDMS imparts the electrodes with self-adhesion, high stretchability, as well as strong interfacial bonding between TX-PDMS and AgNW-CNC II. The electrodes achieve skin-like modulus by adjusting TX content, endowing the EL devices with a high compliance (186 kPa of Young’s modulus). The luminescent layer with Cl-BT exhibits a high dielectric constant (19) and luminance (up to 72 cd m−2). The assembled EL device with excellent cyclic stability (luminance retention 85% after 400 cycles), durability (luminance retention >94% after 400 min) and stretchability (88% luminance at 200% strain) can work properly at broad temperatures (−20 ~ 70 °C) and underwater. This biocompatible and self-adhesive EL device demonstrates great potential for implantable biomedical devices and wearable displays under harsh environments.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.