Brain-computer interfaces inspired spiking neural network model for depression stage identification

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2024-06-15 DOI:10.1016/j.jneumeth.2024.110203
M. Angelin Ponrani , Monika Anand , Mahmood Alsaadi , Ashit Kumar Dutta , Roma Fayaz , Sojomon Mathew , Mousmi Ajay Chaurasia , Sunila , Manisha Bhende
{"title":"Brain-computer interfaces inspired spiking neural network model for depression stage identification","authors":"M. Angelin Ponrani ,&nbsp;Monika Anand ,&nbsp;Mahmood Alsaadi ,&nbsp;Ashit Kumar Dutta ,&nbsp;Roma Fayaz ,&nbsp;Sojomon Mathew ,&nbsp;Mousmi Ajay Chaurasia ,&nbsp;Sunila ,&nbsp;Manisha Bhende","doi":"10.1016/j.jneumeth.2024.110203","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Depression is a global mental disorder, and traditional diagnostic methods mainly rely on scales and subjective evaluations by doctors, which cannot effectively identify symptoms and even carry the risk of misdiagnosis. Brain-Computer Interfaces inspired deep learning-assisted diagnosis based on physiological signals holds promise for improving traditional methods lacking physiological basis and leads next generation neuro-technologies. However, traditional deep learning methods rely on immense computational power and mostly involve end-to-end network learning. These learning methods also lack physiological interpretability, limiting their clinical application in assisted diagnosis.</p></div><div><h3>Methodology</h3><p>A brain-like learning model for diagnosing depression using electroencephalogram (EEG) is proposed. The study collects EEG data using 128-channel electrodes, producing a 128×128 brain adjacency matrix. Given the assumption of undirected connectivity, the upper half of the 128×128 matrix is chosen in order to minimise the input parameter size, producing 8,128-dimensional data. After eliminating 28 components derived from irrelevant or reference electrodes, a 90×90 matrix is produced, which can be used as an input for a single-channel brain-computer interface image.</p></div><div><h3>Result</h3><p>At the functional level, a spiking neural network is constructed to classify individuals with depression and healthy individuals, achieving an accuracy exceeding 97.5 %.</p></div><div><h3>Comparison with existing methods</h3><p>Compared to deep convolutional methods, the spiking method reduces energy consumption.</p></div><div><h3>Conclusion</h3><p>At the structural level, complex networks are utilized to establish spatial topology of brain connections and analyse their graph features, identifying potential abnormal brain functional connections in individuals with depression.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"409 ","pages":"Article 110203"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001481","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Depression is a global mental disorder, and traditional diagnostic methods mainly rely on scales and subjective evaluations by doctors, which cannot effectively identify symptoms and even carry the risk of misdiagnosis. Brain-Computer Interfaces inspired deep learning-assisted diagnosis based on physiological signals holds promise for improving traditional methods lacking physiological basis and leads next generation neuro-technologies. However, traditional deep learning methods rely on immense computational power and mostly involve end-to-end network learning. These learning methods also lack physiological interpretability, limiting their clinical application in assisted diagnosis.

Methodology

A brain-like learning model for diagnosing depression using electroencephalogram (EEG) is proposed. The study collects EEG data using 128-channel electrodes, producing a 128×128 brain adjacency matrix. Given the assumption of undirected connectivity, the upper half of the 128×128 matrix is chosen in order to minimise the input parameter size, producing 8,128-dimensional data. After eliminating 28 components derived from irrelevant or reference electrodes, a 90×90 matrix is produced, which can be used as an input for a single-channel brain-computer interface image.

Result

At the functional level, a spiking neural network is constructed to classify individuals with depression and healthy individuals, achieving an accuracy exceeding 97.5 %.

Comparison with existing methods

Compared to deep convolutional methods, the spiking method reduces energy consumption.

Conclusion

At the structural level, complex networks are utilized to establish spatial topology of brain connections and analyse their graph features, identifying potential abnormal brain functional connections in individuals with depression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于抑郁症阶段识别的脑机接口启发尖峰神经网络模型
背景:抑郁症是一种全球性精神障碍,传统的诊断方法主要依赖量表和医生的主观评价,无法有效识别症状,甚至存在误诊风险。受脑机接口启发,基于生理信号的深度学习辅助诊断有望改善缺乏生理基础的传统方法,并引领下一代神经技术的发展。然而,传统的深度学习方法依赖于巨大的计算能力,而且大多涉及端到端的网络学习。这些学习方法也缺乏生理学可解释性,限制了其在辅助诊断中的临床应用:提出了一种利用脑电图(EEG)诊断抑郁症的类脑学习模型。研究使用 128 个通道电极收集脑电图数据,生成 128×128 的大脑邻接矩阵。考虑到无定向连接的假设,选择 128×128 矩阵的上半部分,以最小化输入参数的大小,从而产生 8128 维数据。在剔除来自无关电极或参考电极的 28 个分量后,产生了一个 90×90 矩阵,可用作单通道脑机接口图像的输入:结果:在功能层面上,构建了一个尖峰神经网络来对抑郁症患者和健康人进行分类,准确率超过 97.5%:与深度卷积方法相比,尖峰方法降低了能耗:在结构层面,利用复杂网络建立大脑连接的空间拓扑并分析其图特征,从而识别出抑郁症患者潜在的异常大脑功能连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Exploring persistence in animal models: the sinking platform test. Detecting fast-ripples on both micro- and macro-electrodes in epilepsy: a wavelet-based CNN detector. Using a mixed-reality headset to elicit and track clinically relevant movement in the clinic. Studying decision making in rats using a contextual visual discrimination task: Detection and prevention of alternative behavioral strategies. Fractal analysis to assess the differentiation state of oligodendroglia in culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1