Sri Harsha Akella, Ayan Mukherjee, Ortal Lidor-Shalev, Roman Bashkurov, Yang Wang, Isaac Buchine, Longlong Wang, Melina Zysler, Michal Ejgenberg, Tatyana Kravchuk, Alexander C. Kozen, Dmitry Bravo-Zhivotovskii, Yitzhak Apeloig, Sang Bok Lee, Xiulin Fan, Michal Leskes, Malachi Noked
{"title":"Advanced Molecular Layer Deposition of SixZnyOz Thin Film Coatings for Improved Electrochemical Performance of NMC811","authors":"Sri Harsha Akella, Ayan Mukherjee, Ortal Lidor-Shalev, Roman Bashkurov, Yang Wang, Isaac Buchine, Longlong Wang, Melina Zysler, Michal Ejgenberg, Tatyana Kravchuk, Alexander C. Kozen, Dmitry Bravo-Zhivotovskii, Yitzhak Apeloig, Sang Bok Lee, Xiulin Fan, Michal Leskes, Malachi Noked","doi":"10.1002/batt.202400241","DOIUrl":null,"url":null,"abstract":"<p>The practical realization of Nickel-rich layered oxide cathode materials such as LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) is hampered by several structural and interfacial instabilities over prolonged cycling. Several reports have proposed surface passivation via an artificial cathode electrolyte interphase (ACEI) as a promising method for mitigating the parasitic reactions affecting NMC811 while simultaneously improving its electrochemical performance over prolonged cycling. Herein, we report an in-house designed (tBuMe<sub>2</sub>Si)<sub>2</sub>Zn single source precursor for developing Si<sub>x</sub>Zn<sub>y</sub>O<sub>z</sub> ternary CEI thin films on NMC811 via molecular layer deposition (MLD) in combination with O<sub>3</sub> or H<sub>2</sub>O as oxidizing agent. We demonstrate that the single precursor (tBuMe<sub>2</sub>Si)<sub>2</sub>Zn avoids the need for two different precursors (Si & Zn). In-depth spectroscopic studies reveal the mechanism of the formation of organosiloxane/zinc-oxide composite thin film, via intermediates of unprecedented organo-silicon-zinc compounds. Understanding the reaction mechanism paved the path for a successful deposition of ACEI on NMC811. Rate capability studies shows the ACEI protected cathodes exhibit higher discharge capacity at 4 C than pristine NMC811. Furthermore, studies on full cells with graphite anode were conducted to evaluate the practical viability of Si<sub>x</sub>Zn<sub>y</sub>O<sub>z</sub> ACEI thin films on NMC811. After prolonged cycling the ACEI-coated NMC811 full cells significantly improved the electrochemical performance than pristine NMC811 by ~12%.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400241","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400241","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The practical realization of Nickel-rich layered oxide cathode materials such as LiNi0.8Mn0.1Co0.1O2 (NMC811) is hampered by several structural and interfacial instabilities over prolonged cycling. Several reports have proposed surface passivation via an artificial cathode electrolyte interphase (ACEI) as a promising method for mitigating the parasitic reactions affecting NMC811 while simultaneously improving its electrochemical performance over prolonged cycling. Herein, we report an in-house designed (tBuMe2Si)2Zn single source precursor for developing SixZnyOz ternary CEI thin films on NMC811 via molecular layer deposition (MLD) in combination with O3 or H2O as oxidizing agent. We demonstrate that the single precursor (tBuMe2Si)2Zn avoids the need for two different precursors (Si & Zn). In-depth spectroscopic studies reveal the mechanism of the formation of organosiloxane/zinc-oxide composite thin film, via intermediates of unprecedented organo-silicon-zinc compounds. Understanding the reaction mechanism paved the path for a successful deposition of ACEI on NMC811. Rate capability studies shows the ACEI protected cathodes exhibit higher discharge capacity at 4 C than pristine NMC811. Furthermore, studies on full cells with graphite anode were conducted to evaluate the practical viability of SixZnyOz ACEI thin films on NMC811. After prolonged cycling the ACEI-coated NMC811 full cells significantly improved the electrochemical performance than pristine NMC811 by ~12%.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.