François Schindelé, Laura Kong, Emily M. Lane, Raphaël Paris, Maurizio Ripepe, Vasily Titov, Rick Bailey
{"title":"A Review of Tsunamis Generated by Volcanoes (TGV) Source Mechanism, Modelling, Monitoring and Warning Systems","authors":"François Schindelé, Laura Kong, Emily M. Lane, Raphaël Paris, Maurizio Ripepe, Vasily Titov, Rick Bailey","doi":"10.1007/s00024-024-03515-y","DOIUrl":null,"url":null,"abstract":"<div><p>Tsunamis generated by volcanic eruptions have risen to prominence since the December 2018 tsunami generated by the flank collapse of Anak Krakatau during a moderate eruption and then the global tsunami generated by the explosive eruption of the Hunga volcano in the Tongan Archipelago in January 2022. Both events cause fatalities and highlight the lack in tsunami warning systems to detect and warn for tsunamis induced by volcanic mechanisms. Following the Hunga Tonga—Hunga Ha’apai eruption and tsunami, an ad hoc working group on Tsunamis Generated by Volcanoes was formed by the Intergovernmental Oceanographic Commission of UNESCO. Volcanic tsunamis differ from seismic tsunamis in that there are a wide range of source mechanisms that can generate the tsunamis waves and this makes understanding, modelling and monitoring volcanic tsunamis much more difficult than seismic tsunamis. This paper provides a review of both the mechanisms behind volcanic tsunamis and the variety of modelling techniques that can be used to simulate their effects for tsunami hazard assessment and forecasting. It gives an example of a volcanic tsunami risk assessment undertaken for Stromboli, outlines the requirement of volcanic monitoring to warn for tsunami hazard and provides examples of volcanic tsunami warning systems in Italy, the Hawaiian Island (USA), Tonga and Indonesia. The paper finishes by highlighting the need for implementing monitoring and warning systems for volcanic tsunamis for locations with submarine volcanoes or near-shore volcanoes which could potentially generate tsunamis.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 6","pages":"1745 - 1792"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-024-03515-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03515-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tsunamis generated by volcanic eruptions have risen to prominence since the December 2018 tsunami generated by the flank collapse of Anak Krakatau during a moderate eruption and then the global tsunami generated by the explosive eruption of the Hunga volcano in the Tongan Archipelago in January 2022. Both events cause fatalities and highlight the lack in tsunami warning systems to detect and warn for tsunamis induced by volcanic mechanisms. Following the Hunga Tonga—Hunga Ha’apai eruption and tsunami, an ad hoc working group on Tsunamis Generated by Volcanoes was formed by the Intergovernmental Oceanographic Commission of UNESCO. Volcanic tsunamis differ from seismic tsunamis in that there are a wide range of source mechanisms that can generate the tsunamis waves and this makes understanding, modelling and monitoring volcanic tsunamis much more difficult than seismic tsunamis. This paper provides a review of both the mechanisms behind volcanic tsunamis and the variety of modelling techniques that can be used to simulate their effects for tsunami hazard assessment and forecasting. It gives an example of a volcanic tsunami risk assessment undertaken for Stromboli, outlines the requirement of volcanic monitoring to warn for tsunami hazard and provides examples of volcanic tsunami warning systems in Italy, the Hawaiian Island (USA), Tonga and Indonesia. The paper finishes by highlighting the need for implementing monitoring and warning systems for volcanic tsunamis for locations with submarine volcanoes or near-shore volcanoes which could potentially generate tsunamis.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.