A Fault-Tolerant Approach for Modular Robots through Self-Reconfiguration

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-06-13 DOI:10.1002/aisy.202300774
Jian Qi, Mingzhu Lai, Zhiyuan Yang, Ning Zhao, Kai Han, Xin Sui, Jie Zhao, Yanhe Zhu
{"title":"A Fault-Tolerant Approach for Modular Robots through Self-Reconfiguration","authors":"Jian Qi,&nbsp;Mingzhu Lai,&nbsp;Zhiyuan Yang,&nbsp;Ning Zhao,&nbsp;Kai Han,&nbsp;Xin Sui,&nbsp;Jie Zhao,&nbsp;Yanhe Zhu","doi":"10.1002/aisy.202300774","DOIUrl":null,"url":null,"abstract":"<p>Modular robots have unique advantages in handling faults and improving their robustness due to their self-reconfiguration capacity and homogeneous interchangeability. When locked joint failure occurs in modular robots, the distribution of the failed modules will affect the manipulation capacity of the robot. In this article, a novel self-reconfiguration method that utilizes only the remaining resources available to mitigate the damage caused by module joint failures is proposed. The key node configuration is searched by the particle swarm optimization (PSO) algorithm, and then the collision-free reconfiguration path is planned by the rapidly exploring random trees (RRT) algorithm. The proposed method not only handles single-module lockup failure but can also be expanded to multi-module lockup failures, fully improving the fault tolerance of the modular robot. The method is deployed on the hardware, and the feasibility of the algorithm is verified by self-reconfiguration experiments containing faulty modules.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 7","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300774","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Modular robots have unique advantages in handling faults and improving their robustness due to their self-reconfiguration capacity and homogeneous interchangeability. When locked joint failure occurs in modular robots, the distribution of the failed modules will affect the manipulation capacity of the robot. In this article, a novel self-reconfiguration method that utilizes only the remaining resources available to mitigate the damage caused by module joint failures is proposed. The key node configuration is searched by the particle swarm optimization (PSO) algorithm, and then the collision-free reconfiguration path is planned by the rapidly exploring random trees (RRT) algorithm. The proposed method not only handles single-module lockup failure but can also be expanded to multi-module lockup failures, fully improving the fault tolerance of the modular robot. The method is deployed on the hardware, and the feasibility of the algorithm is verified by self-reconfiguration experiments containing faulty modules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自我重新配置实现模块化机器人的容错方法
模块化机器人具有自我重新配置能力和同质互换性,因此在处理故障和提高鲁棒性方面具有独特的优势。当模块化机器人的锁定关节发生故障时,故障模块的分布将影响机器人的操纵能力。本文提出了一种新型的自重新配置方法,该方法仅利用剩余的可用资源来减轻模块接口故障造成的损害。通过粒子群优化(PSO)算法搜索关键节点配置,然后通过快速探索随机树(RRT)算法规划无碰撞的重新配置路径。所提出的方法不仅能处理单模块锁定故障,还能扩展到多模块锁定故障,充分提高了模块机器人的容错能力。该方法已在硬件上部署,并通过包含故障模块的自重新配置实验验证了算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1