Femur bone volumetric estimation for osteoporosis classification based on deep learning with tuna jellyfish optimization using X-ray images

Halesh T G, Sathish P.
{"title":"Femur bone volumetric estimation for osteoporosis classification based on deep learning with tuna jellyfish optimization using X-ray images","authors":"Halesh T G, Sathish P.","doi":"10.3233/mgs-230123","DOIUrl":null,"url":null,"abstract":"Osteoporosis is a disorder, that leads to fractures and fatal problems in bones. It is believed that more than 200 million individuals are affected globally. Furthermore, osteoporosis is caused by micro-architectural degeneration of bone tissues, which increases the risk of bone fragility and fractures. Moreover, the osteoporosis categorization is essential for the medical industry, which classifies the skeleton problems of individuals caused by ageing. This work presented the prediction of femur bone volume for osteoporosis classification. Moreover, the femur bone X-ray image is utilized for the classification. The preprocessing phase is employed to neglect the noise contained in input bone images through a non-local means filter. In the image segmentation process, the SegNet is utilized to isolate the specific portion. Moreover, the template search approach based on femoral geometric estimation is carried out and the feature extraction phase is essential for a significant feature extraction process. The proposed tuna jellyfish optimization based deep batch-normalized eLU AlexNet (DbneAlexNet) is utilized in the osteoporosis classification process. Furthermore, accuracy, Positive Predictive Value (PPV), Negative Predictive Value (NPV), True Positive Rate (TPR) and True Negative Rate (TNR) are the metrics to validate the model and the superior values 0.913, 0.906, 0.896, 0.923 and 0.932 are achieved.","PeriodicalId":508072,"journal":{"name":"Multiagent and Grid Systems","volume":"33 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-230123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis is a disorder, that leads to fractures and fatal problems in bones. It is believed that more than 200 million individuals are affected globally. Furthermore, osteoporosis is caused by micro-architectural degeneration of bone tissues, which increases the risk of bone fragility and fractures. Moreover, the osteoporosis categorization is essential for the medical industry, which classifies the skeleton problems of individuals caused by ageing. This work presented the prediction of femur bone volume for osteoporosis classification. Moreover, the femur bone X-ray image is utilized for the classification. The preprocessing phase is employed to neglect the noise contained in input bone images through a non-local means filter. In the image segmentation process, the SegNet is utilized to isolate the specific portion. Moreover, the template search approach based on femoral geometric estimation is carried out and the feature extraction phase is essential for a significant feature extraction process. The proposed tuna jellyfish optimization based deep batch-normalized eLU AlexNet (DbneAlexNet) is utilized in the osteoporosis classification process. Furthermore, accuracy, Positive Predictive Value (PPV), Negative Predictive Value (NPV), True Positive Rate (TPR) and True Negative Rate (TNR) are the metrics to validate the model and the superior values 0.913, 0.906, 0.896, 0.923 and 0.932 are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习和金枪鱼水母优化的骨质疏松症分类中的股骨骨量估算(使用 X 光图像
骨质疏松症是一种疾病,会导致骨折和致命的骨骼问题。据信,全球有超过 2 亿人受到影响。此外,骨质疏松症是由骨组织的微结构退化引起的,这增加了骨脆性和骨折的风险。此外,骨质疏松症的分类对于医疗行业来说至关重要,它可以对衰老导致的个人骨骼问题进行分类。这项工作介绍了用于骨质疏松症分类的股骨骨量预测。此外,分类还利用了股骨 X 光图像。预处理阶段通过非局部均值滤波器忽略输入骨骼图像中的噪声。在图像分割过程中,利用 SegNet 分离出特定部分。此外,还采用了基于股骨几何估算的模板搜索方法,而特征提取阶段对于重要的特征提取过程至关重要。在骨质疏松症分类过程中,使用了所提出的基于金枪鱼水母优化的深度批量归一化 eLU AlexNet(DbneAlexNet)。此外,准确率、阳性预测值(PPV)、阴性预测值(NPV)、真阳性率(TPR)和真阴性率(TNR)是验证该模型的指标,其优越值分别为 0.913、0.906、0.896、0.923 和 0.932。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Femur bone volumetric estimation for osteoporosis classification based on deep learning with tuna jellyfish optimization using X-ray images A review on deep learning-based object tracking methods Hybrid Aquila optimizer for efficient classification with probabilistic neural networks An effective approach for reducing data redundancy in multi-agent system communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1