Structural prediction of carbon cluster isomers with machine-learning potential

Duy Huy Nguyen
{"title":"Structural prediction of carbon cluster isomers with machine-learning potential","authors":"Duy Huy Nguyen","doi":"10.15625/0868-3166/20609","DOIUrl":null,"url":null,"abstract":"Structural prediction of low-energy isomers of carbon twelve-atom clusters is carried out using the recently developed machine-learning potential GAP-20. The GAP-20 agrees with density-functional theory calculations regarding geometric structures and average C-C bond lengths for most isomers. However, the GAP-20 substantially lowers the energies of cage-like structures, resulting in a wrong ground state. A comparison of the cohesive energies with the density-functional theory points out that the GAP-20 only gives good results for monocyclic rings. Two multicyclic rings appear as new low-energy isomers, which have yet to be discovered in previous research.","PeriodicalId":504426,"journal":{"name":"Communications in Physics","volume":"17 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/20609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural prediction of low-energy isomers of carbon twelve-atom clusters is carried out using the recently developed machine-learning potential GAP-20. The GAP-20 agrees with density-functional theory calculations regarding geometric structures and average C-C bond lengths for most isomers. However, the GAP-20 substantially lowers the energies of cage-like structures, resulting in a wrong ground state. A comparison of the cohesive energies with the density-functional theory points out that the GAP-20 only gives good results for monocyclic rings. Two multicyclic rings appear as new low-energy isomers, which have yet to be discovered in previous research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习潜力预测碳簇异构体的结构
利用最近开发的机器学习势能 GAP-20 对碳十二原子团簇的低能异构体进行了结构预测。就大多数异构体的几何结构和平均 C-C 键长度而言,GAP-20 与密度泛函理论计算结果一致。然而,GAP-20 大大降低了笼状结构的能量,导致基态错误。将内聚能与密度泛函理论进行比较后发现,GAP-20 只为单环提供了良好的结果。有两个多环作为新的低能异构体出现,这在以前的研究中尚未发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The transformation of ferromagnetic properties of Fe3O4 into ferromagnetic properties of α-Fe2O3 by the polyol process, heat treatment, isothermally annealing and sintering Structural prediction of carbon cluster isomers with machine-learning potential Size dependence of melting process of armchair hexagonal boron nitride nanoribbon Dirac CP violation phase in the neutrino sector with A4 flavour symmetry Comparing receptor binding properties of SARS-CoV-2 and of SARS-CoV virus by using unsupervised machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1