Jhared Axel Mora-Jiménez, Vanessa Andreina Alvarez-Rodriguez, Sebastián Cisneros-Hernández, Carolina Ramírez-Martínez, Alberto Ordaz
{"title":"Natural pigment indigoidine production: process design, simulation, and techno-economic assessment","authors":"Jhared Axel Mora-Jiménez, Vanessa Andreina Alvarez-Rodriguez, Sebastián Cisneros-Hernández, Carolina Ramírez-Martínez, Alberto Ordaz","doi":"10.1515/cppm-2023-0098","DOIUrl":null,"url":null,"abstract":"Abstract Natural pigment production represents an innovative and sustainable alternative to synthetic pigments. However, its industrial production to meet the global demand for pigments poses technological and economic challenges. In this work, a process design and simulation were conducted using SuperPro Designer to produce a blue natural pigment known as indigoidine, which is in high demand as a natural alternative to synthetic blue dyes in industries. The process design included upstream, bioreaction, and downstream processing to produce 113 tons per year of dry indigoidine. For the conception and design of the bioprocess, experimental data reported in the literature, such as kinetic and stoichiometric parameters, culture media, feeding strategy, and volumetric power input, were taken into account. The economic and profitability indicators of four scenarios were assessed based on a base scenario, which involved changing the typical stirred tank reactor to an airlift reactor, decreasing indigoidine recovery, and reducing biomass production. It was estimated that the use of an airlift reactor significantly improves the profitability of the bioprocess, while a 50 % decrease in biomass concentration (less than 40 g/L) significantly affected the profitability of the process. Finally, an equilibrium production point of around 56 tons per year was determined to balance total revenues with operational costs. This is the first work that offers valuable insights into the scaling-up of natural pigment indigoidine production using bacteria.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Natural pigment production represents an innovative and sustainable alternative to synthetic pigments. However, its industrial production to meet the global demand for pigments poses technological and economic challenges. In this work, a process design and simulation were conducted using SuperPro Designer to produce a blue natural pigment known as indigoidine, which is in high demand as a natural alternative to synthetic blue dyes in industries. The process design included upstream, bioreaction, and downstream processing to produce 113 tons per year of dry indigoidine. For the conception and design of the bioprocess, experimental data reported in the literature, such as kinetic and stoichiometric parameters, culture media, feeding strategy, and volumetric power input, were taken into account. The economic and profitability indicators of four scenarios were assessed based on a base scenario, which involved changing the typical stirred tank reactor to an airlift reactor, decreasing indigoidine recovery, and reducing biomass production. It was estimated that the use of an airlift reactor significantly improves the profitability of the bioprocess, while a 50 % decrease in biomass concentration (less than 40 g/L) significantly affected the profitability of the process. Finally, an equilibrium production point of around 56 tons per year was determined to balance total revenues with operational costs. This is the first work that offers valuable insights into the scaling-up of natural pigment indigoidine production using bacteria.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.