Yongheng Zhao, Xuzhao Chai, Cuicui He, Yiming Lu, Pengwei Wen, Li Yan, Zhao Li
{"title":"Multi-UAV tracking target in urban environments by model predictive control and improved whale optimizer","authors":"Yongheng Zhao, Xuzhao Chai, Cuicui He, Yiming Lu, Pengwei Wen, Li Yan, Zhao Li","doi":"10.1117/12.3032000","DOIUrl":null,"url":null,"abstract":"In this work, the method of Model Predictive Control (MPC) and Improved Whale Optimization Algorithm (IWOA) has been proposed to solve multiple unmanned aerial vehicles (UAVs) tracking a moving target in urban environment. The problem models are established, including the UAV model, target model, environment model and cost function model. Adopting MPC as a control framework for UAV target tracking, WOA is chosen as the solver of MPC. To further improve the optimized efficiency, the introduced strategies include bootstrap initialization strategy, double-difference variational strategy, adaptive weighting strategy and elite selection strategy. The compared experiments show the control method in this paper has better tracking performance and is a reliable technique for UAV tracking the moving target.","PeriodicalId":342847,"journal":{"name":"International Conference on Algorithms, Microchips and Network Applications","volume":"218 ","pages":"1317112 - 1317112-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithms, Microchips and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3032000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the method of Model Predictive Control (MPC) and Improved Whale Optimization Algorithm (IWOA) has been proposed to solve multiple unmanned aerial vehicles (UAVs) tracking a moving target in urban environment. The problem models are established, including the UAV model, target model, environment model and cost function model. Adopting MPC as a control framework for UAV target tracking, WOA is chosen as the solver of MPC. To further improve the optimized efficiency, the introduced strategies include bootstrap initialization strategy, double-difference variational strategy, adaptive weighting strategy and elite selection strategy. The compared experiments show the control method in this paper has better tracking performance and is a reliable technique for UAV tracking the moving target.