Chang Wang, Zhiqiong Liu, Jin Liu, Wang Li, Junxin Chen
{"title":"Towards a container scheduling policy for alleviating total startup latency in serverless computing platform","authors":"Chang Wang, Zhiqiong Liu, Jin Liu, Wang Li, Junxin Chen","doi":"10.1117/12.3032003","DOIUrl":null,"url":null,"abstract":"FaaS enables users to focus on developing function codes rather than managing complex infrastructure, as the serverless computing platform takes responsibility for resource management and dynamically scales computing resources for serverless functions. While serverless computing platform provides efficient hardware resource management and provisioning, they suffer from weaker computing performance due to the latency associated with serverless function startup. Startup latency refers to the time required to prepare execution environments for user functions. To alleviate this latency, this paper proposes a container scheduling policy aimed at reducing startup latency by reducing the likelihood of container cold starts. This is achieved by unifying language runtime images, creating pre-warm container pools, and warm containers. We formulate the startup latency problem and implement a scheduling policy in a serverless computing platform. Simulation results demonstrate that our proposed scheduling policy effectively reduces overall startup latency while ensuring optimal computing performance for user functions.","PeriodicalId":342847,"journal":{"name":"International Conference on Algorithms, Microchips and Network Applications","volume":" 12","pages":"131711W - 131711W-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithms, Microchips and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3032003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
FaaS enables users to focus on developing function codes rather than managing complex infrastructure, as the serverless computing platform takes responsibility for resource management and dynamically scales computing resources for serverless functions. While serverless computing platform provides efficient hardware resource management and provisioning, they suffer from weaker computing performance due to the latency associated with serverless function startup. Startup latency refers to the time required to prepare execution environments for user functions. To alleviate this latency, this paper proposes a container scheduling policy aimed at reducing startup latency by reducing the likelihood of container cold starts. This is achieved by unifying language runtime images, creating pre-warm container pools, and warm containers. We formulate the startup latency problem and implement a scheduling policy in a serverless computing platform. Simulation results demonstrate that our proposed scheduling policy effectively reduces overall startup latency while ensuring optimal computing performance for user functions.