Fatemeh Erfani, F. Farhadi, M. Iranshahi, Motahareh Boozari
{"title":"Evaluation of the Anti-diabetic Activity of Purified Compounds of Ferula assafoetida by in vitro and in silico Methods","authors":"Fatemeh Erfani, F. Farhadi, M. Iranshahi, Motahareh Boozari","doi":"10.1177/1934578x241257125","DOIUrl":null,"url":null,"abstract":"Postprandial hyperglycemia is considered an early sign of diabetes. Enzyme inhibitors, such as α-amylase and α-glucosidase inhibitors, are currently being studied as potential drugs for preventing postprandial hyperglycemia. In this study, we investigated the effects of four purified 7-hydroxycoumarine derivatives from Ferula assafoetida: umbelliprenin, farnesiferol A, farnesiferol C, and samarcandin. We evaluated cell toxicity using the MTT method and also examined glucose uptake and inhibition of α-amylase and α-glucosidase enzymes in vitro. Additionally, we conducted a molecular docking study to investigate the mechanism of enzyme inhibition. The cell toxicity of the terpenoid coumarin derivatives (umbelliprenin, farnesiferol A, farnesiferol C, and samarcandin) on HepG2 cells was found to be approximately 28 to 37 µg/ml. The glucose uptake assay showed that these compounds (at a concentration of 25 µg/ml) were able to increase glucose consumption by HepG2 cells to a level comparable to that of the positive control (metformin at 50 µg/ml). Furthermore, umbelliprenin significantly inhibited the activity of α-amylase and α-glucosidase (by 35.07% and 4.98%, respectively). Molecular docking results indicated that umbelliprenin, with a farnesyl chain, had a more potent inhibitory effect. Our findings suggest that umbelliprenin may be a valuable compound for controlling postprandial hyperglycemia and diabetes. However, further in vivo studies and clinical trials are necessary to validate these effects. While this research offers potential for the development of more effective compounds with coumarin structures, further studies are needed to confirm these findings.","PeriodicalId":509851,"journal":{"name":"Natural Product Communications","volume":"62 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1934578x241257125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Postprandial hyperglycemia is considered an early sign of diabetes. Enzyme inhibitors, such as α-amylase and α-glucosidase inhibitors, are currently being studied as potential drugs for preventing postprandial hyperglycemia. In this study, we investigated the effects of four purified 7-hydroxycoumarine derivatives from Ferula assafoetida: umbelliprenin, farnesiferol A, farnesiferol C, and samarcandin. We evaluated cell toxicity using the MTT method and also examined glucose uptake and inhibition of α-amylase and α-glucosidase enzymes in vitro. Additionally, we conducted a molecular docking study to investigate the mechanism of enzyme inhibition. The cell toxicity of the terpenoid coumarin derivatives (umbelliprenin, farnesiferol A, farnesiferol C, and samarcandin) on HepG2 cells was found to be approximately 28 to 37 µg/ml. The glucose uptake assay showed that these compounds (at a concentration of 25 µg/ml) were able to increase glucose consumption by HepG2 cells to a level comparable to that of the positive control (metformin at 50 µg/ml). Furthermore, umbelliprenin significantly inhibited the activity of α-amylase and α-glucosidase (by 35.07% and 4.98%, respectively). Molecular docking results indicated that umbelliprenin, with a farnesyl chain, had a more potent inhibitory effect. Our findings suggest that umbelliprenin may be a valuable compound for controlling postprandial hyperglycemia and diabetes. However, further in vivo studies and clinical trials are necessary to validate these effects. While this research offers potential for the development of more effective compounds with coumarin structures, further studies are needed to confirm these findings.