{"title":"Recent developments on MXene-based Zn-ion flexible supercapacitors","authors":"Sreeram Shruti , Madeshwaran Mohanraj , S.T. Senthilkumar , Mani Ulaganathan","doi":"10.1016/j.coelec.2024.101557","DOIUrl":null,"url":null,"abstract":"<div><p>MXenes are a new class of two-dimensional layered structure materials that have caught attention of researchers recently. The unique feature of such a layered structure is that it can help in the easy access of electrolyte ions and offers more redox active sites, making MXenes a highly suitable electrode material for electrochemical energy storage applications, which are therefore extensively investigated in supercapacitor applications. However, for specific flexible applications, making a highly efficient flexible energy storage device with exceptional power, energy, and cycle life performance is crucial. To have high specific energy, Zn-ion-based flexible charge storage devices have been studied where MXene plays a significant role as an electrode material. However, making a flexible device with good mechanical stability along with reliable electrochemical performances is challenging. Therefore, MXene is preferred as an active material as individual, composite, and flexible film electrodes due to their high electrochemical accessibility and mechanical and electrochemical stability. Thus, this review discusses the recent developments of MXene-based Zn-ion FSC and highlights their potential for producing state-of-the-art technologies. It also discusses significant challenges and future perspectives of MXene to encourage further research and development in this area.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101557"},"PeriodicalIF":7.9000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001182","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes are a new class of two-dimensional layered structure materials that have caught attention of researchers recently. The unique feature of such a layered structure is that it can help in the easy access of electrolyte ions and offers more redox active sites, making MXenes a highly suitable electrode material for electrochemical energy storage applications, which are therefore extensively investigated in supercapacitor applications. However, for specific flexible applications, making a highly efficient flexible energy storage device with exceptional power, energy, and cycle life performance is crucial. To have high specific energy, Zn-ion-based flexible charge storage devices have been studied where MXene plays a significant role as an electrode material. However, making a flexible device with good mechanical stability along with reliable electrochemical performances is challenging. Therefore, MXene is preferred as an active material as individual, composite, and flexible film electrodes due to their high electrochemical accessibility and mechanical and electrochemical stability. Thus, this review discusses the recent developments of MXene-based Zn-ion FSC and highlights their potential for producing state-of-the-art technologies. It also discusses significant challenges and future perspectives of MXene to encourage further research and development in this area.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •