Building tailor-made bioenergetic proteins and circuits from de novo redox proteins

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Electrochemistry Pub Date : 2024-06-05 DOI:10.1016/j.coelec.2024.101541
Benjamin J. Hardy , Ethan L. Bungay , Cam Mellor , Paul Curnow , J.L. Ross Anderson
{"title":"Building tailor-made bioenergetic proteins and circuits from de novo redox proteins","authors":"Benjamin J. Hardy ,&nbsp;Ethan L. Bungay ,&nbsp;Cam Mellor ,&nbsp;Paul Curnow ,&nbsp;J.L. Ross Anderson","doi":"10.1016/j.coelec.2024.101541","DOIUrl":null,"url":null,"abstract":"<div><p>Natural electron-conducting circuits play essential roles in respiration and photosynthesis and are therefore of fundamental importance to all life on earth. These circuits are composed of redox-active cofactors housed within proteins, or multi-subunit protein complexes, facilitating the conduction of electrons in support of transmembrane proton pumping, redox catalysis and the extracellular delivery of electrons to terminal electron acceptors. Though the natural electron-conducting circuitry can be complex, it is possible to recapitulate selected, desirable functions within minimalist <em>de novo</em>-designed proteins. Here we highlight recent advances in the <em>de novo</em> design of redox proteins and enzymes that illustrate the progress and potential of this approach, providing insight into the workings and engineering of their natural counterparts, while creating a readily adaptable and robust set of components for future bioelectronic engineering.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001029/pdfft?md5=9e6cf478bdd25e41f23004518122d378&pid=1-s2.0-S2451910324001029-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001029","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural electron-conducting circuits play essential roles in respiration and photosynthesis and are therefore of fundamental importance to all life on earth. These circuits are composed of redox-active cofactors housed within proteins, or multi-subunit protein complexes, facilitating the conduction of electrons in support of transmembrane proton pumping, redox catalysis and the extracellular delivery of electrons to terminal electron acceptors. Though the natural electron-conducting circuitry can be complex, it is possible to recapitulate selected, desirable functions within minimalist de novo-designed proteins. Here we highlight recent advances in the de novo design of redox proteins and enzymes that illustrate the progress and potential of this approach, providing insight into the workings and engineering of their natural counterparts, while creating a readily adaptable and robust set of components for future bioelectronic engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从新氧化还原蛋白中构建量身定制的生物能蛋白和电路
天然电子传导回路在呼吸作用和光合作用中发挥着至关重要的作用,因此对地球上的所有生命都至关重要。这些回路由蛋白质或多亚基蛋白质复合物中具有氧化还原作用的辅助因子组成,可促进电子传导,支持跨膜质子泵、氧化还原催化和细胞外向终端电子受体输送电子。虽然自然界的电子传导电路可能很复杂,但我们仍有可能在从头设计的极简蛋白质中重现选定的理想功能。在这里,我们将重点介绍从头设计氧化还原蛋白和酶的最新进展,这些进展说明了这种方法的进步和潜力,让人们深入了解其天然对应物的工作原理和工程学,同时为未来的生物电子工程创造一套易于适应且稳健的组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
期刊最新文献
Insights into electrode–electrolyte interfaces by in situ scanning tunnelling microscopy Editorial Board Current status of ferro-/ferricyanide for redox flow batteries Modeling oxygen reduction activity loss mechanisms in atomically dispersed Fe–N–C electrocatalysts Machine learning-guided design, synthesis, and characterization of atomically dispersed electrocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1