Comparative metabolite profiling in single and multiple bulb cultivars of shallot (Allium cepa L. Aggregatum group)

Q1 Agricultural and Biological Sciences Journal of the Saudi Society of Agricultural Sciences Pub Date : 2024-12-01 DOI:10.1016/j.jssas.2024.06.002
Fransiska Renita Anon Basundari , Endang Sulistyaningsih , Rudi Hari Murti , Tri Rini Nuringtyas
{"title":"Comparative metabolite profiling in single and multiple bulb cultivars of shallot (Allium cepa L. Aggregatum group)","authors":"Fransiska Renita Anon Basundari ,&nbsp;Endang Sulistyaningsih ,&nbsp;Rudi Hari Murti ,&nbsp;Tri Rini Nuringtyas","doi":"10.1016/j.jssas.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>Tuk-Tuk and Sanren F1 are two shallot cultivars that exhibit divergent bulb multiplication traits. Tuk-Tuk typically produces one bulb. In contrast, Sanren F1 tends to produce multiple bulbs. This study used metabolomics during bulb development and harvesting. The objective of the study was to identify the metabolites that might affect the bulb multiplication of shallot. The initial samples of both cultivars were collected during the bulbs developmental stage i.e, 11 weeks after sowing (WAS), while the second sample was gathered during harvesting stage (16 WAS). The Proton Nuclear Magnetic Resonance (<sup>1</sup>H NMR) analysis was applied to freeze-dried shallot bulbs for<!--> <!-->metabolomics analysis. Multivariate analysis utilizing Principal Component Analysis (PCA) followed by Orthogonal Projections Discriminant Analysis (OPLS-DA) were conducted using MetaboAnalyst 5.0. The <sup>1</sup>H NMR spectra revealed 28 putative metabolites. All data, including both cultivars during development and harvesting, was not clearly separated by PCA. However in the development stage, Sanren F1 was observed to have higher histidine than Tuk-Tuk, indicating the involvement of histidine kinase signaling system in the bulb multiplication. Hence, histidine kinase known for its role in the cytokinin signaling which contributing in the cell division regulation and may affect Sanren F1 bulb multiplication. Four metabolites i.e., sucrose, arginine, acetic acid, and myricetin were higher in Tuk-Tuk than Sanren F1, a cultivar tends to produce a single bulb. Valine, phenylalanine, formic acid, and α-linolenic acid were considerably higher in Sanren F1 than Tuk-Tuk during harvesting. There were also several metabolites with greater relative concentrations than the others. Though not all of those metabolites significantly differed amongst the examined cultivars, it was thought that they had an impact on bulb development. It would be of great interest to ascertain whether metabolites detected in Sanren F1 at higher levels have the potential to function as chemical markers for distinguishing shallot cultivars that are capable of producing multiple bulbs.</div></div>","PeriodicalId":17560,"journal":{"name":"Journal of the Saudi Society of Agricultural Sciences","volume":"23 8","pages":"Pages 521-532"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Saudi Society of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1658077X24000638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Tuk-Tuk and Sanren F1 are two shallot cultivars that exhibit divergent bulb multiplication traits. Tuk-Tuk typically produces one bulb. In contrast, Sanren F1 tends to produce multiple bulbs. This study used metabolomics during bulb development and harvesting. The objective of the study was to identify the metabolites that might affect the bulb multiplication of shallot. The initial samples of both cultivars were collected during the bulbs developmental stage i.e, 11 weeks after sowing (WAS), while the second sample was gathered during harvesting stage (16 WAS). The Proton Nuclear Magnetic Resonance (1H NMR) analysis was applied to freeze-dried shallot bulbs for metabolomics analysis. Multivariate analysis utilizing Principal Component Analysis (PCA) followed by Orthogonal Projections Discriminant Analysis (OPLS-DA) were conducted using MetaboAnalyst 5.0. The 1H NMR spectra revealed 28 putative metabolites. All data, including both cultivars during development and harvesting, was not clearly separated by PCA. However in the development stage, Sanren F1 was observed to have higher histidine than Tuk-Tuk, indicating the involvement of histidine kinase signaling system in the bulb multiplication. Hence, histidine kinase known for its role in the cytokinin signaling which contributing in the cell division regulation and may affect Sanren F1 bulb multiplication. Four metabolites i.e., sucrose, arginine, acetic acid, and myricetin were higher in Tuk-Tuk than Sanren F1, a cultivar tends to produce a single bulb. Valine, phenylalanine, formic acid, and α-linolenic acid were considerably higher in Sanren F1 than Tuk-Tuk during harvesting. There were also several metabolites with greater relative concentrations than the others. Though not all of those metabolites significantly differed amongst the examined cultivars, it was thought that they had an impact on bulb development. It would be of great interest to ascertain whether metabolites detected in Sanren F1 at higher levels have the potential to function as chemical markers for distinguishing shallot cultivars that are capable of producing multiple bulbs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大葱(Allium cepa l. Aggregatum 组)单球茎和多球茎栽培品种的代谢物比较分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Saudi Society of Agricultural Sciences
Journal of the Saudi Society of Agricultural Sciences Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
8.70
自引率
0.00%
发文量
69
审稿时长
17 days
期刊介绍: Journal of the Saudi Society of Agricultural Sciences is an English language, peer-review scholarly publication which publishes research articles and critical reviews from every area of Agricultural sciences and plant science. Scope of the journal includes, Agricultural Engineering, Plant production, Plant protection, Animal science, Agricultural extension, Agricultural economics, Food science and technology, Soil and water sciences, Irrigation science and technology and environmental science (soil formation, biological classification, mapping and management of soil). Journal of the Saudi Society of Agricultural Sciences publishes 4 issues per year and is the official publication of the King Saud University and Saudi Society of Agricultural Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.
期刊最新文献
Editorial Board Comparative metabolite profiling in single and multiple bulb cultivars of shallot (Allium cepa L. Aggregatum group) Mapping nutrient and soil fertility indexes for Durum Wheat in the La Mina region of Algeria The effect of microplastic contaminated compost on the growth of rice seedlings Exploring farmer’s assessment of soil quality and root yield in cassava-based cropping systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1