Upcycling of ligno-cellulosic nutshells waste biomass in biodegradable plastic-based biocomposites uses - a comprehensive review

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2024-07-01 DOI:10.1016/j.jcomc.2024.100478
{"title":"Upcycling of ligno-cellulosic nutshells waste biomass in biodegradable plastic-based biocomposites uses - a comprehensive review","authors":"","doi":"10.1016/j.jcomc.2024.100478","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass and agricultural wastes have increased exponentially and are significant concerns resulting in further environmental and societal issues through the accumulation and burning of waste. Waste burning emits fumes, which release and increase greenhouse gas emissions into the atmosphere. During the production and harvesting of nuts, nutshell waste can account for 20 to as much as 80 wt.% of the total production volume, leaving a considerable amount to accumulate and be underutilized. China and the USA are the most significant producers of nutshells globally, of which, peanuts, walnuts, and almonds are the highest produced. In addition to biomass waste, plastic pollution causes the contamination of land and marine environments and the leaching of toxic substances during their decomposition under the action of environmental conditions. Interest in biodegradable polymers, their investigation, and production have quickly risen recently. This addresses the challenges of the linear economy cycle and offers a solution to waste management by improving degradation rates and applications. As such, biodegradable and biobased polymers can decrease energy consumption by 65 % and greenhouse gas emissions by 35 to 80 %. Therefore, this timely review focuses on using nutshell wastes such as walnuts, almonds, peanuts, pecan, pistachios, and hazelnut shells as fillers in biodegradable polymers and fabricating sustainable composites via various processing techniques. Current uses and environmental considerations of nutshell waste-based composites have been discussed based on feasibility and economic impact.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000483/pdfft?md5=87ba56db687a8739f1d76a6fb3bd8448&pid=1-s2.0-S2666682024000483-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass and agricultural wastes have increased exponentially and are significant concerns resulting in further environmental and societal issues through the accumulation and burning of waste. Waste burning emits fumes, which release and increase greenhouse gas emissions into the atmosphere. During the production and harvesting of nuts, nutshell waste can account for 20 to as much as 80 wt.% of the total production volume, leaving a considerable amount to accumulate and be underutilized. China and the USA are the most significant producers of nutshells globally, of which, peanuts, walnuts, and almonds are the highest produced. In addition to biomass waste, plastic pollution causes the contamination of land and marine environments and the leaching of toxic substances during their decomposition under the action of environmental conditions. Interest in biodegradable polymers, their investigation, and production have quickly risen recently. This addresses the challenges of the linear economy cycle and offers a solution to waste management by improving degradation rates and applications. As such, biodegradable and biobased polymers can decrease energy consumption by 65 % and greenhouse gas emissions by 35 to 80 %. Therefore, this timely review focuses on using nutshell wastes such as walnuts, almonds, peanuts, pecan, pistachios, and hazelnut shells as fillers in biodegradable polymers and fabricating sustainable composites via various processing techniques. Current uses and environmental considerations of nutshell waste-based composites have been discussed based on feasibility and economic impact.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木质纤维素果壳废弃生物质在生物可降解塑料基生物复合材料中的升级再循环--综述
生物质和农业废弃物急剧增加,成为人们关注的重要问题,并通过废物的积累和焚烧进一步引发环境和社会问题。废物焚烧产生的烟雾会释放出温室气体,并增加向大气的排放。在坚果的生产和采收过程中,果壳废料可能占总产量的 20% 到 80%,因此有相当数量的果壳废料会堆积起来,得不到充分利用。中国和美国是全球最主要的果壳生产国,其中花生、核桃和杏仁的产量最高。除生物质废弃物外,塑料污染还会造成陆地和海洋环境污染,并在环境条件作用下分解过程中渗出有毒物质。近来,人们对可生物降解聚合物及其研究和生产的兴趣迅速升温。这不仅解决了线性经济周期所带来的挑战,而且通过提高降解率和应用,为废物管理提供了一种解决方案。因此,可生物降解和生物基聚合物可减少 65% 的能源消耗和 35% 至 80% 的温室气体排放。因此,这篇及时的综述将重点讨论如何利用核桃、杏仁、花生、山核桃、开心果和榛子壳等果壳废料作为可生物降解聚合物的填料,并通过各种加工技术制造可持续复合材料。根据可行性和经济影响,讨论了基于果壳废料的复合材料的当前用途和环境考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane Cure-induced residual stresses and viscoelastic effects in repaired wind turbine blades: Analytical-numerical investigation Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1