Yanjun Sun , Beinan Jia , Long Chang , Yongjun Jian
{"title":"Soret-driven convection of Maxwell-Cattaneo fluids in a vertical channel","authors":"Yanjun Sun , Beinan Jia , Long Chang , Yongjun Jian","doi":"10.1016/j.euromechflu.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The Soret effect, also known as thermal diffusion, plays a crucial role in the phenomenon of double diffusion convection in liquids. This study investigates Soret-driven convection within a vertical double-diffusive layer of Maxwell-Cattaneo (M-C) fluids, where the boundaries maintain constant temperatures and solute concentrations that are distinct from each other. The heat transfer equation for Maxwell-Cattaneo fluids is governed by a hyperbolic rule of heat conduction, rather than the typical Fourier parabolic one. The Chebyshev collocation method is employed to solve the corresponding stability eigenvalue problem. The neutral stability curve shows significant fluctuation responses due to the M-C effect. When the Cattaneo number (<em>C</em>) reaches 0.02, multiple local minima appear in the critical Grashof number (<em>Gr</em>). The instability the thermal convection is found to be amplified by the combined effects of Maxwell-Cattaneo and Soret, along with the Grashof number, while the double diffusion effect appears to suppress the instability of convective system. The influence of Soret effect on convective instability will diminish dramatically as the <em>Gr</em> number rises above 8200.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 17-28"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000803","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Soret effect, also known as thermal diffusion, plays a crucial role in the phenomenon of double diffusion convection in liquids. This study investigates Soret-driven convection within a vertical double-diffusive layer of Maxwell-Cattaneo (M-C) fluids, where the boundaries maintain constant temperatures and solute concentrations that are distinct from each other. The heat transfer equation for Maxwell-Cattaneo fluids is governed by a hyperbolic rule of heat conduction, rather than the typical Fourier parabolic one. The Chebyshev collocation method is employed to solve the corresponding stability eigenvalue problem. The neutral stability curve shows significant fluctuation responses due to the M-C effect. When the Cattaneo number (C) reaches 0.02, multiple local minima appear in the critical Grashof number (Gr). The instability the thermal convection is found to be amplified by the combined effects of Maxwell-Cattaneo and Soret, along with the Grashof number, while the double diffusion effect appears to suppress the instability of convective system. The influence of Soret effect on convective instability will diminish dramatically as the Gr number rises above 8200.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.