{"title":"Electrocatalysts for the oxidation of ethanol in proton exchange membrane fuel cells, electrolysis cells, and sensors","authors":"Peter G. Pickup , E. Bradley Easton","doi":"10.1016/j.coelec.2024.101553","DOIUrl":null,"url":null,"abstract":"<div><p>The potential for direct ethanol fuel cells (DEFCs) to provide sustainable, widely accessible power has driven development of electrocatalysts for the ethanol oxidation reaction (EOR) over several decades. However, low power output, low efficiencies, and the production of acetic acid and acetaldehyde byproducts has caused progress to stall. Consequently, interest in this area is transitioning to electrolysis of ethanol to produce green hydrogen and commodity chemicals. Concurrently, applications of DEFC as breath alcohol sensors in breathalyzers are increasing, and this has become an established commercial market for EOR catalysts. Progress in the development of these technologies has been hampered by the limited number of catalysts that have been evaluated in proton exchange membrane cells, the paucity of data on product distributions, and limited gas-phase-sensing studies.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101553"},"PeriodicalIF":7.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001145/pdfft?md5=36b025ec8ac69a0c46453d805db16ced&pid=1-s2.0-S2451910324001145-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001145","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The potential for direct ethanol fuel cells (DEFCs) to provide sustainable, widely accessible power has driven development of electrocatalysts for the ethanol oxidation reaction (EOR) over several decades. However, low power output, low efficiencies, and the production of acetic acid and acetaldehyde byproducts has caused progress to stall. Consequently, interest in this area is transitioning to electrolysis of ethanol to produce green hydrogen and commodity chemicals. Concurrently, applications of DEFC as breath alcohol sensors in breathalyzers are increasing, and this has become an established commercial market for EOR catalysts. Progress in the development of these technologies has been hampered by the limited number of catalysts that have been evaluated in proton exchange membrane cells, the paucity of data on product distributions, and limited gas-phase-sensing studies.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •