Advancing electrocatalytic reactions through mapping key intermediates to active sites via descriptors

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2024-06-19 DOI:10.1039/D3CS01130E
Xiaowen Sun, Rafael B. Araujo, Egon Campos dos Santos, Yuanhua Sang, Hong Liu and Xiaowen Yu
{"title":"Advancing electrocatalytic reactions through mapping key intermediates to active sites via descriptors","authors":"Xiaowen Sun, Rafael B. Araujo, Egon Campos dos Santos, Yuanhua Sang, Hong Liu and Xiaowen Yu","doi":"10.1039/D3CS01130E","DOIUrl":null,"url":null,"abstract":"<p >Descriptors play a crucial role in electrocatalysis as they can provide valuable insights into the electrochemical performance of energy conversion and storage processes. They allow for the understanding of different catalytic activities and enable the prediction of better catalysts without relying on the time-consuming trial-and-error approaches. Hence, this comprehensive review focuses on highlighting the significant advancements in commonly used descriptors for critical electrocatalytic reactions. First, the fundamental reaction processes and key intermediates involved in several electrocatalytic reactions are summarized. Subsequently, three types of descriptors are classified and introduced based on different reactions and catalysts. These include d-band center descriptors, readily accessible intrinsic property descriptors, and spin-related descriptors, all of which contribute to a profound understanding of catalytic behavior. Furthermore, multi-type descriptors that collectively determine the catalytic performance are also summarized. Finally, we discuss the future of descriptors, envisioning their potential to integrate multiple factors, broaden application scopes, and synergize with artificial intelligence for more efficient catalyst design and discovery.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs01130e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Descriptors play a crucial role in electrocatalysis as they can provide valuable insights into the electrochemical performance of energy conversion and storage processes. They allow for the understanding of different catalytic activities and enable the prediction of better catalysts without relying on the time-consuming trial-and-error approaches. Hence, this comprehensive review focuses on highlighting the significant advancements in commonly used descriptors for critical electrocatalytic reactions. First, the fundamental reaction processes and key intermediates involved in several electrocatalytic reactions are summarized. Subsequently, three types of descriptors are classified and introduced based on different reactions and catalysts. These include d-band center descriptors, readily accessible intrinsic property descriptors, and spin-related descriptors, all of which contribute to a profound understanding of catalytic behavior. Furthermore, multi-type descriptors that collectively determine the catalytic performance are also summarized. Finally, we discuss the future of descriptors, envisioning their potential to integrate multiple factors, broaden application scopes, and synergize with artificial intelligence for more efficient catalyst design and discovery.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过描述符将关键中间体映射到活性位点,推进电催化反应。
描述符在电催化中发挥着至关重要的作用,因为它们可以为能量转换和储存过程的电化学性能提供宝贵的见解。通过描述符可以了解不同的催化活性,并预测更好的催化剂,而无需依赖耗时的试错方法。因此,本综合综述重点强调了关键电催化反应常用描述符的重大进展。首先,概述了几个电催化反应中涉及的基本反应过程和关键中间产物。随后,根据不同的反应和催化剂对三类描述子进行了分类和介绍。这些描述符包括 d 带中心描述符、易于获取的固有属性描述符和自旋相关描述符,它们都有助于深入理解催化行为。此外,我们还总结了共同决定催化性能的多类型描述符。最后,我们讨论了描述符的未来,展望了描述符整合多种因素、拓宽应用范围以及与人工智能协同提高催化剂设计和发现效率的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Metal-phenolic network composites: from fundamentals to applications. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1