Laura Okmane, Mats Sandgren, Jerry Ståhlberg, Gustav Nestor
{"title":"1H, 13C and 15N backbone resonance assignment of Cel45A from Phanerochaete chrysosporium","authors":"Laura Okmane, Mats Sandgren, Jerry Ståhlberg, Gustav Nestor","doi":"10.1007/s12104-024-10182-6","DOIUrl":null,"url":null,"abstract":"<div><p>A glycoside hydrolase family 45 (GH45) enzyme from the white-rot basidiomycete fungus <i>Phanerochaete chrysosporium</i> (<i>Pc</i>Cel45A) was expressed in <i>Pichia pastoris</i> with <sup>13</sup>C and <sup>15</sup>N labelling. A nearly complete assignment of <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N backbone resonances was obtained, as well as the secondary structure prediction based on the assigned chemical shifts using the TALOS-N software. The predicted secondary structure was almost identical to previously published crystal structures of the same enzyme, except for differences in the termini of the sequence. This is the first NMR study using an isotopically labelled GH45 enzyme.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10182-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A glycoside hydrolase family 45 (GH45) enzyme from the white-rot basidiomycete fungus Phanerochaete chrysosporium (PcCel45A) was expressed in Pichia pastoris with 13C and 15N labelling. A nearly complete assignment of 1H, 13C and 15N backbone resonances was obtained, as well as the secondary structure prediction based on the assigned chemical shifts using the TALOS-N software. The predicted secondary structure was almost identical to previously published crystal structures of the same enzyme, except for differences in the termini of the sequence. This is the first NMR study using an isotopically labelled GH45 enzyme.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.