Clara Julián, Sabina Villadangos, Laia Jené, Ot Pasques, Marta Pintó-Marijuan, Sergi Munné-Bosch
{"title":"Biological outliers: essential elements to understand the causes and consequences of reductions in maximum photochemical efficiency of PSII in plants.","authors":"Clara Julián, Sabina Villadangos, Laia Jené, Ot Pasques, Marta Pintó-Marijuan, Sergi Munné-Bosch","doi":"10.1007/s00425-024-04466-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>By studying Cistus albidus shrubs in their natural habitat, we show that biological outliers can help us to understand the causes and consequences of maximum photochemical efficiency decreases in plants, thus reinforcing the importance of integrating these often-neglected data into scientific practice. Outliers are individuals with exceptional traits that are often excluded of data analysis. However, this may result in very important mistakes not accurately capturing the true trajectory of the population, thereby limiting our understanding of a given biological process. Here, we studied the role of biological outliers in understanding the causes and consequences of maximum photochemical efficiency decreases in plants, using the semi-deciduous shrub C. albidus growing in a Mediterranean-type ecosystem. We assessed interindividual variability in winter, spring and summer maximum PSII photochemical efficiency in a population of C. albidus growing under Mediterranean conditions. A strong correlation was observed between maximum PSII photochemical efficiency (F<sub>v</sub>/F<sub>m</sub> ratio) and leaf water desiccation. While decreases in maximum PSII photochemical efficiency did not result in any damage at the organ level during winter, reductions in the F<sub>v</sub>/F<sub>m</sub> ratio were associated to leaf mortality during summer. However, all plants could recover after rainfalls, thus maximum PSII photochemical efficiency decreases did not result in an increased mortality at the organism level, despite extreme water deficit and temperatures exceeding 40ºC during the summer. We conclude that, once methodological outliers are excluded, not only biological outliers must not be excluded from data analysis, but focusing on them is crucial to understand the causes and consequences of maximum PSII photochemical efficiency decreases in plants.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-024-04466-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: By studying Cistus albidus shrubs in their natural habitat, we show that biological outliers can help us to understand the causes and consequences of maximum photochemical efficiency decreases in plants, thus reinforcing the importance of integrating these often-neglected data into scientific practice. Outliers are individuals with exceptional traits that are often excluded of data analysis. However, this may result in very important mistakes not accurately capturing the true trajectory of the population, thereby limiting our understanding of a given biological process. Here, we studied the role of biological outliers in understanding the causes and consequences of maximum photochemical efficiency decreases in plants, using the semi-deciduous shrub C. albidus growing in a Mediterranean-type ecosystem. We assessed interindividual variability in winter, spring and summer maximum PSII photochemical efficiency in a population of C. albidus growing under Mediterranean conditions. A strong correlation was observed between maximum PSII photochemical efficiency (Fv/Fm ratio) and leaf water desiccation. While decreases in maximum PSII photochemical efficiency did not result in any damage at the organ level during winter, reductions in the Fv/Fm ratio were associated to leaf mortality during summer. However, all plants could recover after rainfalls, thus maximum PSII photochemical efficiency decreases did not result in an increased mortality at the organism level, despite extreme water deficit and temperatures exceeding 40ºC during the summer. We conclude that, once methodological outliers are excluded, not only biological outliers must not be excluded from data analysis, but focusing on them is crucial to understand the causes and consequences of maximum PSII photochemical efficiency decreases in plants.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.