Smart scanning: automatic detection of superficially located lymph nodes using ultrasound - initial results.

IF 1.3 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren Pub Date : 2025-03-01 Epub Date: 2024-06-17 DOI:10.1055/a-2331-0951
Maximilian Rink, Julian Künzel, Christian Stroszczynski, Friedrich Jung, Ernst Michael Jung
{"title":"Smart scanning: automatic detection of superficially located lymph nodes using ultrasound - initial results.","authors":"Maximilian Rink, Julian Künzel, Christian Stroszczynski, Friedrich Jung, Ernst Michael Jung","doi":"10.1055/a-2331-0951","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last few years, there has been an increasing focus on integrating artificial intelligence (AI) into existing imaging systems. This also applies to ultrasound. There are already applications for thyroid and breast lesions that enable AI-assisted sonography directly on the device. However, this is not yet the case for lymph nodes.The aim was to test whether already established programs for AI-assisted sonography of breast lesions and thyroid nodules are also suitable for identifying and measuring superficial lymph nodes. For this purpose, the two programs were used as a supplement to routine ultrasound examinations of superficial lymph nodes. The accuracy of detection by AI was then evaluated using a previously defined score. If available, a comparison was made with cross-sectional imaging.The programs that were used are able to adequately detect lymph nodes in the majority of cases (78.6%). Problems were caused in particular by a high proportion of echo-rich fat, blurred differentiation from the surrounding tissues and the occurrence of lymph node conglomerates. The available cross-sectional images did not contradict the classification of the lesion as a lymph node in any case.In the majority of cases, the tested programs are already able to detect and measure superficial lymph nodes. Further improvement can be expected through specific training of the software. Further developments and studies are required to assess risk of malignancy. · The inclusion of AI in imaging is increasingly becoming a scientific focus.. · The detection of lymph nodes is already possible using device-integrated AI software.. · Malignancy assessment of the detected lymph nodes is not yet possible.. · Rink M, Künzel J, Stroszczynski C et al. Smart scanning: automatic detection of superficially located lymph nodes using ultrasound - initial results. Rofo 2025; DOI 10.1055/a-2331-0951.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":" ","pages":"310-316"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2331-0951","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last few years, there has been an increasing focus on integrating artificial intelligence (AI) into existing imaging systems. This also applies to ultrasound. There are already applications for thyroid and breast lesions that enable AI-assisted sonography directly on the device. However, this is not yet the case for lymph nodes.The aim was to test whether already established programs for AI-assisted sonography of breast lesions and thyroid nodules are also suitable for identifying and measuring superficial lymph nodes. For this purpose, the two programs were used as a supplement to routine ultrasound examinations of superficial lymph nodes. The accuracy of detection by AI was then evaluated using a previously defined score. If available, a comparison was made with cross-sectional imaging.The programs that were used are able to adequately detect lymph nodes in the majority of cases (78.6%). Problems were caused in particular by a high proportion of echo-rich fat, blurred differentiation from the surrounding tissues and the occurrence of lymph node conglomerates. The available cross-sectional images did not contradict the classification of the lesion as a lymph node in any case.In the majority of cases, the tested programs are already able to detect and measure superficial lymph nodes. Further improvement can be expected through specific training of the software. Further developments and studies are required to assess risk of malignancy. · The inclusion of AI in imaging is increasingly becoming a scientific focus.. · The detection of lymph nodes is already possible using device-integrated AI software.. · Malignancy assessment of the detected lymph nodes is not yet possible.. · Rink M, Künzel J, Stroszczynski C et al. Smart scanning: automatic detection of superficially located lymph nodes using ultrasound - initial results. Rofo 2025; DOI 10.1055/a-2331-0951.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能扫描:利用超声波自动检测浅表淋巴结--初步结果。
在过去几年中,人们越来越重视将人工智能(AI)集成到现有的成像系统中。这同样适用于超声波。目前已有针对甲状腺和乳腺病变的应用程序,可直接在设备上进行人工智能辅助超声造影。我们的目的是测试已建立的乳腺病变和甲状腺结节人工智能辅助超声造影程序是否也适用于识别和测量浅表淋巴结。为此,这两个程序被用作浅表淋巴结常规超声检查的补充。然后使用之前定义的评分来评估人工智能检测的准确性。在大多数情况下(78.6%),所使用的程序都能充分检测出淋巴结。出现问题的原因主要是富含回声的脂肪比例较高,与周围组织的分界模糊,以及出现淋巴结聚集。在大多数情况下,测试程序已经能够检测和测量浅表淋巴结。在大多数情况下,测试程序已能检测和测量浅表淋巴结,通过对软件进行专门培训,可望进一步提高检测和测量能力。评估恶性肿瘤风险还需要进一步的开发和研究。- 将人工智能纳入成像技术正日益成为科学界关注的焦点。- 使用设备集成的人工智能软件已经可以检测淋巴结。- 目前还无法对检测到的淋巴结进行恶性程度评估。- Rink M, Künzel J, Stroszczynski C et al. 智能扫描:利用超声波自动检测浅表淋巴结 - 初步结果。Fortschr Röntgenstr 2024; DOI 10.1055/a-2331-0951.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
5.60%
发文量
340
期刊介绍: Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung. Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag. Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.
期刊最新文献
Ultrasound in Body Composition Analysis: Au courant. Smart scanning: automatic detection of superficially located lymph nodes using ultrasound - initial results. Vaccine-associated axillary lymphadenopathy with a focus on COVID-19 vaccines. Flow Diversion for the Treatment of Middle Cerebral Artery Aneurysms. The Relationship Between Intramural Fat Accumulation and Sarcopenia on MR Enterography Exams in Patients with Crohn's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1