Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-06-17 DOI:10.1016/j.crmeth.2024.100798
Andrew Kowalczewski, Shiyang Sun, Nhu Y Mai, Yuanhui Song, Plansky Hoang, Xiyuan Liu, Huaxiao Yang, Zhen Ma
{"title":"Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques.","authors":"Andrew Kowalczewski, Shiyang Sun, Nhu Y Mai, Yuanhui Song, Plansky Hoang, Xiyuan Liu, Huaxiao Yang, Zhen Ma","doi":"10.1016/j.crmeth.2024.100798","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell organoids are powerful models for studying organ development, disease modeling, drug screening, and regenerative medicine applications. The convergence of organoid technology, tissue engineering, and artificial intelligence (AI) could potentially enhance our understanding of the design principles for organoid engineering. In this study, we utilized micropatterning techniques to create a designer library of 230 cardiac organoids with 7 geometric designs. We employed manifold learning techniques to analyze single organoid heterogeneity based on 10 physiological parameters. We clustered and refined the cardiac organoids based on their functional similarity using unsupervised machine learning approaches, thus elucidating unique functionalities associated with geometric designs. We also highlighted the critical role of calcium transient rising time in distinguishing organoids based on geometric patterns and clustering results. This integration of organoid engineering and machine learning enhances our understanding of structure-function relationships in cardiac organoids, paving the way for more controlled and optimized organoid design.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell organoids are powerful models for studying organ development, disease modeling, drug screening, and regenerative medicine applications. The convergence of organoid technology, tissue engineering, and artificial intelligence (AI) could potentially enhance our understanding of the design principles for organoid engineering. In this study, we utilized micropatterning techniques to create a designer library of 230 cardiac organoids with 7 geometric designs. We employed manifold learning techniques to analyze single organoid heterogeneity based on 10 physiological parameters. We clustered and refined the cardiac organoids based on their functional similarity using unsupervised machine learning approaches, thus elucidating unique functionalities associated with geometric designs. We also highlighted the critical role of calcium transient rising time in distinguishing organoids based on geometric patterns and clustering results. This integration of organoid engineering and machine learning enhances our understanding of structure-function relationships in cardiac organoids, paving the way for more controlled and optimized organoid design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习技术优化几何约束心脏器官的设计。
干细胞类器官是研究器官发育、疾病建模、药物筛选和再生医学应用的强大模型。类器官技术、组织工程和人工智能(AI)的融合有可能加深我们对类器官工程设计原则的理解。在这项研究中,我们利用微图案技术创建了一个包含 230 个心脏类器官的设计器库,其中有 7 种几何设计。我们采用流形学习技术,根据 10 个生理参数分析单个类器官的异质性。我们利用无监督机器学习方法,根据功能相似性对心脏器管进行聚类和细化,从而阐明了与几何设计相关的独特功能。我们还强调了钙瞬态上升时间在根据几何模式和聚类结果区分类器官中的关键作用。这种类器官工程与机器学习的整合增强了我们对心脏类器官结构与功能关系的理解,为更可控、更优化的类器官设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1