Generation of super-resolution images from barcode-based spatial transcriptomics by deep image prior.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-12-20 DOI:10.1016/j.crmeth.2024.100937
Jeongbin Park, Seungho Cook, Dongjoo Lee, Jinyeong Choi, Seongjin Yoo, Sungwoo Bae, Hyung-Jun Im, Daeseung Lee, Hongyoon Choi
{"title":"Generation of super-resolution images from barcode-based spatial transcriptomics by deep image prior.","authors":"Jeongbin Park, Seungho Cook, Dongjoo Lee, Jinyeong Choi, Seongjin Yoo, Sungwoo Bae, Hyung-Jun Im, Daeseung Lee, Hongyoon Choi","doi":"10.1016/j.crmeth.2024.100937","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (ST) has revolutionized the field of biology by providing a powerful tool for analyzing gene expression in situ. However, current ST methods, particularly barcode-based methods, have limitations in reconstructing high-resolution images from barcodes sparsely distributed in slides. Here, we present SuperST, an algorithm that enables the reconstruction of dense matrices (higher-resolution and non-zero-inflated matrices) from low-resolution ST libraries. SuperST is based on deep image prior, which reconstructs spatial gene expression patterns as image matrices. Compared with previous methods, SuperST generated output images that more closely resembled immunofluorescence images for given gene expression maps. Furthermore, we demonstrated how one can combine images created by SuperST with computer vision algorithms. In this context, we proposed a method for extracting features from the images, which can aid in spatial clustering of genes. By providing a dense matrix for each gene in situ, SuperST can successfully address the resolution and zero-inflation issue.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100937"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics (ST) has revolutionized the field of biology by providing a powerful tool for analyzing gene expression in situ. However, current ST methods, particularly barcode-based methods, have limitations in reconstructing high-resolution images from barcodes sparsely distributed in slides. Here, we present SuperST, an algorithm that enables the reconstruction of dense matrices (higher-resolution and non-zero-inflated matrices) from low-resolution ST libraries. SuperST is based on deep image prior, which reconstructs spatial gene expression patterns as image matrices. Compared with previous methods, SuperST generated output images that more closely resembled immunofluorescence images for given gene expression maps. Furthermore, we demonstrated how one can combine images created by SuperST with computer vision algorithms. In this context, we proposed a method for extracting features from the images, which can aid in spatial clustering of genes. By providing a dense matrix for each gene in situ, SuperST can successfully address the resolution and zero-inflation issue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Generation of super-resolution images from barcode-based spatial transcriptomics by deep image prior. Accelerated protein retention expansion microscopy using microwave radiation. Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state. Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma. Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1