Tracing unknown tumor origins with a biological-pathway-based transformer model.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-06-17 DOI:10.1016/j.crmeth.2024.100797
Jiajing Xie, Ying Chen, Shijie Luo, Wenxian Yang, Yuxiang Lin, Liansheng Wang, Xin Ding, Mengsha Tong, Rongshan Yu
{"title":"Tracing unknown tumor origins with a biological-pathway-based transformer model.","authors":"Jiajing Xie, Ying Chen, Shijie Luo, Wenxian Yang, Yuxiang Lin, Liansheng Wang, Xin Ding, Mengsha Tong, Rongshan Yu","doi":"10.1016/j.crmeth.2024.100797","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer of unknown primary (CUP) represents metastatic cancer where the primary site remains unidentified despite standard diagnostic procedures. To determine the tumor origin in such cases, we developed BPformer, a deep learning method integrating the transformer model with prior knowledge of biological pathways. Trained on transcriptomes from 10,410 primary tumors across 32 cancer types, BPformer achieved remarkable accuracy rates of 94%, 92%, and 89% in primary tumors and primary and metastatic sites of metastatic tumors, respectively, surpassing existing methods. Additionally, BPformer was validated in a retrospective study, demonstrating consistency with tumor sites diagnosed through immunohistochemistry and histopathology. Furthermore, BPformer was able to rank pathways based on their contribution to tumor origin identification, which helped to classify oncogenic signaling pathways into those that are highly conservative among different cancers versus those that are highly variable depending on their origins.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer of unknown primary (CUP) represents metastatic cancer where the primary site remains unidentified despite standard diagnostic procedures. To determine the tumor origin in such cases, we developed BPformer, a deep learning method integrating the transformer model with prior knowledge of biological pathways. Trained on transcriptomes from 10,410 primary tumors across 32 cancer types, BPformer achieved remarkable accuracy rates of 94%, 92%, and 89% in primary tumors and primary and metastatic sites of metastatic tumors, respectively, surpassing existing methods. Additionally, BPformer was validated in a retrospective study, demonstrating consistency with tumor sites diagnosed through immunohistochemistry and histopathology. Furthermore, BPformer was able to rank pathways based on their contribution to tumor origin identification, which helped to classify oncogenic signaling pathways into those that are highly conservative among different cancers versus those that are highly variable depending on their origins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于生物通路的转化器模型追踪未知肿瘤起源
原发灶不明癌症(CUP)是指尽管采用了标准诊断程序,但仍无法确定原发灶的转移性癌症。为了确定这种情况下的肿瘤来源,我们开发了一种深度学习方法 BPformer,它将变压器模型与生物通路的先验知识整合在一起。在来自 32 种癌症类型的 10,410 个原发肿瘤的转录组上进行训练后,BPformer 在原发肿瘤以及转移性肿瘤的原发和转移部位的准确率分别达到了 94%、92% 和 89%,超过了现有方法。此外,BPformer 还在一项回顾性研究中得到验证,证明与免疫组化和组织病理学诊断的肿瘤部位一致。此外,BPformer 还能根据对肿瘤来源识别的贡献对通路进行排序,这有助于将致癌信号通路分为在不同癌症中高度保守的通路和因肿瘤来源而高度多变的通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1