Statistical theory for image classification using deep convolutional neural network with cross-entropy loss under the hierarchical max-pooling model

Pub Date : 2024-06-05 DOI:10.1016/j.jspi.2024.106188
Michael Kohler , Sophie Langer
{"title":"Statistical theory for image classification using deep convolutional neural network with cross-entropy loss under the hierarchical max-pooling model","authors":"Michael Kohler ,&nbsp;Sophie Langer","doi":"10.1016/j.jspi.2024.106188","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional neural networks (CNNs) trained with cross-entropy loss have proven to be extremely successful in classifying images. In recent years, much work has been done to also improve the theoretical understanding of neural networks. Nevertheless, it seems limited when these networks are trained with cross-entropy loss, mainly because of the unboundedness of the target function. In this paper, we aim to fill this gap by analysing the rate of the excess risk of a CNN classifier trained by cross-entropy loss. Under suitable assumptions on the smoothness and structure of the a posteriori probability, it is shown that these classifiers achieve a rate of convergence which is independent of the dimension of the image. These rates are in line with the practical observations about CNNs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000454/pdfft?md5=68a8b5f0ef9e0563ac8f09f8ca152533&pid=1-s2.0-S0378375824000454-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) trained with cross-entropy loss have proven to be extremely successful in classifying images. In recent years, much work has been done to also improve the theoretical understanding of neural networks. Nevertheless, it seems limited when these networks are trained with cross-entropy loss, mainly because of the unboundedness of the target function. In this paper, we aim to fill this gap by analysing the rate of the excess risk of a CNN classifier trained by cross-entropy loss. Under suitable assumptions on the smoothness and structure of the a posteriori probability, it is shown that these classifiers achieve a rate of convergence which is independent of the dimension of the image. These rates are in line with the practical observations about CNNs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
分层最大池模型下使用具有交叉熵损失的深度卷积神经网络进行图像分类的统计理论
事实证明,使用交叉熵损失训练的卷积神经网络(CNN)在图像分类方面非常成功。近年来,人们做了大量工作来提高对神经网络的理论认识。然而,主要由于目标函数的无界性,在使用交叉熵损失训练这些网络时,研究似乎受到了限制。本文旨在通过分析用交叉熵损失训练的 CNN 分类器的超额风险率来填补这一空白。在对后验概率的平滑性和结构进行适当假设的情况下,结果表明这些分类器的收敛速度与图像的维度无关。这些收敛率与 CNN 的实际观察结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1