{"title":"Using cloud computing techniques to map the geographic extent of informal settlements in the greater Cape Town Metropolitan Area","authors":"Siyamthanda Gxokwe, Timothy Dube","doi":"10.1016/j.rsase.2024.101275","DOIUrl":null,"url":null,"abstract":"<div><p>Although remote sensing approaches offer unprecedented opportunities to understand urban land cover dynamics including informal settlements areal extent, challenges such as spectral confusions still persist, particularly when segregating land cover types like informal settlements from planned formal settlements. The improvements in Earth Observation (EO) data analytic tools such as introduction of Google Earth Engine (GEE) cloud computing platform, provide prospects to improve separability of these settlements from other urban land cover classes, via their advanced data processing and filtering algorithm, which allows for the synergic use of multisource and multi-temporal data, thus improving detection and monitoring of these settlements. This study harnessed the advance data analytic powers of GEE cloud computing platform coupled with higher resolution Sentinel-2 data to map the geographical extent of informal settlement in the Cape Town Metropolitan Area. The classification yielded six land cover classes: formal settlements, informal settlements, water, bare or built-up areas, vegetated lands, and croplands. Built-up formal settlement was the most dominant class, accounting for 70% of the total Cape Town surface area, while open water was the least dominant, accounting for 2%. Informal settlements accounted for approximately 7% of all settlements. Although overall accuracy was within acceptable limits (68%), some classes, such as vegetated lands and formal settlements, reported low class accuracies due to spectral similarities with other classes. The findings highlight the importance of the GEE platform, as well as the interaction of contextual and spectral characteristics, as well as various sentinel-2 derived water, built up, and vegetation indices in mapping informal settlements. These findings are critical for the facilitation of improved urban planning, provision of services and assisting in alleviating social as well as environmental issues within the Cape Town Metropolitan area.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101275"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although remote sensing approaches offer unprecedented opportunities to understand urban land cover dynamics including informal settlements areal extent, challenges such as spectral confusions still persist, particularly when segregating land cover types like informal settlements from planned formal settlements. The improvements in Earth Observation (EO) data analytic tools such as introduction of Google Earth Engine (GEE) cloud computing platform, provide prospects to improve separability of these settlements from other urban land cover classes, via their advanced data processing and filtering algorithm, which allows for the synergic use of multisource and multi-temporal data, thus improving detection and monitoring of these settlements. This study harnessed the advance data analytic powers of GEE cloud computing platform coupled with higher resolution Sentinel-2 data to map the geographical extent of informal settlement in the Cape Town Metropolitan Area. The classification yielded six land cover classes: formal settlements, informal settlements, water, bare or built-up areas, vegetated lands, and croplands. Built-up formal settlement was the most dominant class, accounting for 70% of the total Cape Town surface area, while open water was the least dominant, accounting for 2%. Informal settlements accounted for approximately 7% of all settlements. Although overall accuracy was within acceptable limits (68%), some classes, such as vegetated lands and formal settlements, reported low class accuracies due to spectral similarities with other classes. The findings highlight the importance of the GEE platform, as well as the interaction of contextual and spectral characteristics, as well as various sentinel-2 derived water, built up, and vegetation indices in mapping informal settlements. These findings are critical for the facilitation of improved urban planning, provision of services and assisting in alleviating social as well as environmental issues within the Cape Town Metropolitan area.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems