Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment.

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2024-06-17 eCollection Date: 2024-05-01 DOI:10.1063/5.0206058
Linjing Zhu, Xueling Cui, Lingling Jiang, Fang Fang, Boyang Liu
{"title":"Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment.","authors":"Linjing Zhu, Xueling Cui, Lingling Jiang, Fang Fang, Boyang Liu","doi":"10.1063/5.0206058","DOIUrl":null,"url":null,"abstract":"<p><p>The global impact of cancer on human health has raised significant concern. In this context, the tumor microenvironment (TME) plays a pivotal role in the tumorigenesis and malignant progression. In order to enhance the accuracy and efficacy of therapeutic outcomes, there is an imminent requirement for <i>in vitro</i> models that can accurately replicate the intricate characteristics and constituents of TME. Microfluidic devices exhibit notable advantages in investigating the progression and treatment of tumors and have the potential to become a novel methodology for evaluating immune cell activities in TME and assist clinicians in assessing the prognosis of patients. In addition, it shows great advantages compared to traditional cell experiments. Therefore, the review first outlines the applications and advantages of microfluidic chips in facilitating tumor cell culture, constructing TME and investigating immune cell activities. Second, the roles of microfluidic devices in the analysis of circulating tumor cells, tumor prognosis, and drug screening have also been mentioned. Moreover, a forward-looking perspective is discussed, anticipating the widespread clinical adoption of microfluidic devices in the future.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 3","pages":"031506"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0206058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The global impact of cancer on human health has raised significant concern. In this context, the tumor microenvironment (TME) plays a pivotal role in the tumorigenesis and malignant progression. In order to enhance the accuracy and efficacy of therapeutic outcomes, there is an imminent requirement for in vitro models that can accurately replicate the intricate characteristics and constituents of TME. Microfluidic devices exhibit notable advantages in investigating the progression and treatment of tumors and have the potential to become a novel methodology for evaluating immune cell activities in TME and assist clinicians in assessing the prognosis of patients. In addition, it shows great advantages compared to traditional cell experiments. Therefore, the review first outlines the applications and advantages of microfluidic chips in facilitating tumor cell culture, constructing TME and investigating immune cell activities. Second, the roles of microfluidic devices in the analysis of circulating tumor cells, tumor prognosis, and drug screening have also been mentioned. Moreover, a forward-looking perspective is discussed, anticipating the widespread clinical adoption of microfluidic devices in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微流控装置在快速检测肿瘤微环境中细胞活性方面的应用和前景。
癌症对人类健康的全球性影响已引起人们的极大关注。在此背景下,肿瘤微环境(TME)在肿瘤发生和恶性进展中起着举足轻重的作用。为了提高治疗结果的准确性和有效性,迫切需要能够准确复制肿瘤微环境复杂特征和成分的体外模型。微流控装置在研究肿瘤的进展和治疗方面具有显著优势,有可能成为评估 TME 中免疫细胞活动的新方法,并协助临床医生评估患者的预后。此外,与传统的细胞实验相比,它还显示出巨大的优势。因此,本综述首先概述了微流控芯片在促进肿瘤细胞培养、构建 TME 和研究免疫细胞活性方面的应用和优势。其次,还提到了微流控设备在循环肿瘤细胞分析、肿瘤预后和药物筛选方面的作用。此外,还从前瞻性的角度探讨了微流控设备在未来临床广泛应用的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Data-driven models for microfluidics: A short review. Applications of microfluidics in mRNA vaccine development: A review. Viscoelastic particle focusing and separation in a microfluidic channel with a cruciform section. Microfluidics for foodborne bacteria analysis: Moving toward multiple technologies integration. Wicking pumps for microfluidics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1