Shared Mechanisms in Pparγ1sv and Pparγ2 Expression in 3T3-L1 Cells: Studies on Epigenetic and Positive Feedback Regulation of Pparγ during Adipogenesis.
{"title":"Shared Mechanisms in <i>Pparγ1sv</i> and <i>Pparγ2</i> Expression in 3T3-L1 Cells: Studies on Epigenetic and Positive Feedback Regulation of <i>Pparγ</i> during Adipogenesis.","authors":"Yasuhiro Takenaka, Yoshihiko Kakinuma, Masaaki Ikeda, Ikuo Inoue","doi":"10.1155/2024/5518933","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously reported the identification of a novel splicing variant of the mouse peroxisome proliferator-activated receptor-<i>γ</i> (<i>Pparγ</i>), referred to as <i>Pparγ1sv</i>. This variant, encoding the PPAR<i>γ</i>1 protein, is abundantly and ubiquitously expressed, playing a crucial role in adipogenesis. <i>Pparγ1sv</i> possesses a unique promoter and 5' untranslated region (5'UTR), distinct from those of the canonical mouse <i>Pparγ1</i> and <i>Pparγ2</i> mRNAs. We observed a significant increase in DNA methylation at two CpG sites within the proximal promoter region (-733 to -76) of <i>Pparγ1sv</i> during adipocyte differentiation. Concurrently, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) using antibodies against H3K4me3 and H3K27ac indicated marked elevations in both methylation and acetylation of histone H3, while the repressive histone mark H3K9me2 significantly decreased, at the transcription start sites of both <i>Pparγ1sv</i> and <i>Pparγ2</i> following differentiation. Knocking down <i>Pparγ1sv</i> using specific siRNA also led to a decrease in <i>Pparγ2</i> mRNA and PPAR<i>γ</i>2 protein levels; conversely, knocking down <i>Pparγ2</i> resulted in reduced <i>Pparγ1sv</i> mRNA and PPAR<i>γ</i>1 protein levels, suggesting synergistic transcriptional regulation of <i>Pparγ1sv</i> and <i>Pparγ2</i> during adipogenesis. Furthermore, our experiments utilizing the CRISPR-Cas9 system identified crucial PPAR<i>γ</i>-binding sites within the <i>Pparγ</i> gene locus, underscoring their significance in adipogenesis. Based on these findings, we propose a model of positive feedback regulation for <i>Pparγ1sv</i> and <i>Pparγ2</i> expression during the adipocyte differentiation process in 3T3-L1 cells.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2024 ","pages":"5518933"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/5518933","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously reported the identification of a novel splicing variant of the mouse peroxisome proliferator-activated receptor-γ (Pparγ), referred to as Pparγ1sv. This variant, encoding the PPARγ1 protein, is abundantly and ubiquitously expressed, playing a crucial role in adipogenesis. Pparγ1sv possesses a unique promoter and 5' untranslated region (5'UTR), distinct from those of the canonical mouse Pparγ1 and Pparγ2 mRNAs. We observed a significant increase in DNA methylation at two CpG sites within the proximal promoter region (-733 to -76) of Pparγ1sv during adipocyte differentiation. Concurrently, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) using antibodies against H3K4me3 and H3K27ac indicated marked elevations in both methylation and acetylation of histone H3, while the repressive histone mark H3K9me2 significantly decreased, at the transcription start sites of both Pparγ1sv and Pparγ2 following differentiation. Knocking down Pparγ1sv using specific siRNA also led to a decrease in Pparγ2 mRNA and PPARγ2 protein levels; conversely, knocking down Pparγ2 resulted in reduced Pparγ1sv mRNA and PPARγ1 protein levels, suggesting synergistic transcriptional regulation of Pparγ1sv and Pparγ2 during adipogenesis. Furthermore, our experiments utilizing the CRISPR-Cas9 system identified crucial PPARγ-binding sites within the Pparγ gene locus, underscoring their significance in adipogenesis. Based on these findings, we propose a model of positive feedback regulation for Pparγ1sv and Pparγ2 expression during the adipocyte differentiation process in 3T3-L1 cells.
期刊介绍:
PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.