Distributionally Robust Variational Quantum Algorithms With Shifted Noise

Zichang He;Bo Peng;Yuri Alexeev;Zheng Zhang
{"title":"Distributionally Robust Variational Quantum Algorithms With Shifted Noise","authors":"Zichang He;Bo Peng;Yuri Alexeev;Zheng Zhang","doi":"10.1109/TQE.2024.3409309","DOIUrl":null,"url":null,"abstract":"Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical problem as an optimized VQA ansatz may not perform effectively under a different noise environment. For the first time, we explore how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as a random variable with an unknown probability density function (PDF), and we assume that the PDF may shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization problem, with the goal of finding parameters that maintain effectiveness under shifted noise. We utilize a distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical evidence in both the quantum approximate optimization algorithm and the variational quantum eigensolver with hardware-efficient ansatz, indicating that we can identify parameters that perform more robustly under shifted noise. We regard this work as the first step toward improving the reliability of VQAs influenced by shifted noise from the parameter optimization perspective.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547365","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10547365/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical problem as an optimized VQA ansatz may not perform effectively under a different noise environment. For the first time, we explore how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as a random variable with an unknown probability density function (PDF), and we assume that the PDF may shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization problem, with the goal of finding parameters that maintain effectiveness under shifted noise. We utilize a distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical evidence in both the quantum approximate optimization algorithm and the variational quantum eigensolver with hardware-efficient ansatz, indicating that we can identify parameters that perform more robustly under shifted noise. We regard this work as the first step toward improving the reliability of VQAs influenced by shifted noise from the parameter optimization perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有偏移噪声的分布稳健变分量子算法
鉴于量子变分算法(VQA)具有展示近期量子优势的潜力,人们对其进行了广泛研究。尽管已经开发了许多 VQA 参数优化技术,但这仍然是一个重大挑战。一个实际问题是,量子噪声极不稳定,因此很可能实时发生变化。这就带来了一个关键问题,因为优化后的 VQA 方解在不同的噪声环境下可能无法有效执行。我们首次探索了如何优化 VQA 参数,使其对未知的位移噪声具有鲁棒性。我们将噪声水平建模为具有未知概率密度函数(PDF)的随机变量,并假设 PDF 可能会在不确定集合内发生偏移。在这一假设的指导下,我们提出了一个分布稳健性优化问题,目标是找到在偏移噪声下仍能保持有效性的参数。我们利用分布稳健贝叶斯优化求解器来解决我们提出的问题。这为量子近似优化算法和具有硬件效率等式的变分量子求解器提供了数字证据,表明我们可以找出在移位噪声下表现更稳健的参数。我们将这项工作视为从参数优化角度提高受偏移噪声影响的 VQA 可靠性的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
IEEE Transactions on Quantum Engineering Publication Information Dissipative Variational Quantum Algorithms for Gibbs State Preparation TAQNet: Traffic-Aware Minimum-Cost Quantum Communication Network Planning FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1