Economic and environmental bottlenecks in the industrial-scale production of lipid-derived biofuels from oleaginous yeasts: A review of the current trends and future prospects

IF 5.9 3区 工程技术 Q1 AGRONOMY Global Change Biology Bioenergy Pub Date : 2024-06-18 DOI:10.1111/gcbb.13173
Shivali Banerjee, Vijay Singh
{"title":"Economic and environmental bottlenecks in the industrial-scale production of lipid-derived biofuels from oleaginous yeasts: A review of the current trends and future prospects","authors":"Shivali Banerjee,&nbsp;Vijay Singh","doi":"10.1111/gcbb.13173","DOIUrl":null,"url":null,"abstract":"<p>Concerns about climate change and the reliance on fossil fuel reserves have motivated researchers to identify new renewable sources of energy. Biomass holds the potential to replace fossil-derived products with biofuels and bio-based chemicals. Plant-derived lipids are promising sources of biofuels; however, the production of plant oil often leads to the release of massive amounts of carbon dioxide due to deforestation and land-use change. The production of biofuels via plant oils (such as soybean) also competes with food production and in turn, impacts biodiversity. To mitigate these issues, the production of lipids from oleaginous yeasts could be an excellent alternative by incorporating these microbes into biorefineries utilizing agricultural or forest residues. Eventually, these microbial lipids could be potential sources for producing lipid-derived biofuels. However, the current conventional methods for the production and recovery of lipids from oleaginous microbes suffer from economic and ecological challenges that affect its industrial-scale expansion. This review highlights the major economic and environmental bottlenecks for the production of lipid-derived biofuels from oleaginous yeasts. It also provides perspectives on the strategies that could be adapted on economic and ecological fronts to assist the expansion of the production of microbial lipid-derived biofuels at an industrial scale.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 7","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13173","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Concerns about climate change and the reliance on fossil fuel reserves have motivated researchers to identify new renewable sources of energy. Biomass holds the potential to replace fossil-derived products with biofuels and bio-based chemicals. Plant-derived lipids are promising sources of biofuels; however, the production of plant oil often leads to the release of massive amounts of carbon dioxide due to deforestation and land-use change. The production of biofuels via plant oils (such as soybean) also competes with food production and in turn, impacts biodiversity. To mitigate these issues, the production of lipids from oleaginous yeasts could be an excellent alternative by incorporating these microbes into biorefineries utilizing agricultural or forest residues. Eventually, these microbial lipids could be potential sources for producing lipid-derived biofuels. However, the current conventional methods for the production and recovery of lipids from oleaginous microbes suffer from economic and ecological challenges that affect its industrial-scale expansion. This review highlights the major economic and environmental bottlenecks for the production of lipid-derived biofuels from oleaginous yeasts. It also provides perspectives on the strategies that could be adapted on economic and ecological fronts to assist the expansion of the production of microbial lipid-derived biofuels at an industrial scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从含油酵母中工业化生产脂质生物燃料的经济和环境瓶颈:当前趋势和未来前景综述
对气候变化的担忧和对化石燃料储备的依赖促使研究人员寻找新的可再生能源。生物质具有以生物燃料和生物基化学品取代化石产品的潜力。植物提取的脂类是很有前景的生物燃料来源;然而,由于森林砍伐和土地使用的变化,植物油的生产往往会导致大量二氧化碳的释放。通过植物油(如大豆)生产生物燃料还会与粮食生产竞争,进而影响生物多样性。为了缓解这些问题,利用含油酵母生产脂质可能是一个很好的替代方法,可将这些微生物纳入利用农业或森林残留物的生物炼油厂。最终,这些微生物脂类可能成为生产脂类生物燃料的潜在来源。然而,目前从含油微生物中生产和回收脂质的传统方法面临着经济和生态挑战,影响了其工业规模的扩大。本综述强调了从含油酵母中生产脂质生物燃料的主要经济和环境瓶颈。它还从经济和生态方面提供了可采用的策略,以帮助扩大微生物脂质生物燃料的工业化生产规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
期刊最新文献
Converting Biochar Into Biochar-Based Urea Promotes Environmental and Economic Sustainability in Rice-Wheat Rotation System Biogas Purification by Methane and Acetate Manufacturing How much energy can giant reed and Miscanthus produce in marginal lands across Italy? A modelling solution under current and future scenarios Correction to “Moderate Drought Constrains Crop Growth Without Altering Soil Organic Carbon Dynamics in Perennial Cup-Plant and Silage Maize” Advances in Miscanthus × Giganteus Planting Techniques May Increase Carbon Uptake in the Establishment Year
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1