{"title":"Research on Plastic Mitigation Underestimates the Potential Land-Use Impact of Bio-Based Plastic Alternatives","authors":"Levi T. Helm","doi":"10.1111/gcbb.70024","DOIUrl":null,"url":null,"abstract":"<p>The impacts of plastic, including carbon emissions and plastic pollution, have significant negative impacts on human well-being and the environment. Recent research suggests that these impacts could be mitigated by using biomass to create products with lower carbon emissions or that reduce pollution through biodegradation or composting. As the scale of the plastic problem is substantial, the amount of biomass required for mitigation could be large. Biomass may have benefits, but it also has risks, including the potential to cause significant land-use change. Land-use impacts are widely acknowledged in the literature on plastic mitigation but are often downplayed with assumptions that changes in policies, behaviors, agricultural productivity, and technology can ameliorate the most negative impacts. This paper reviews the assumptions made about land use in the literature on biomass-based plastics and plastic alternatives. Current studies generally make optimistic assumptions about land-use change or have limited ability to account for land-use change impacts. These assumptions, including technological and agricultural advancement, along with idealized feedstock sourcing, minimize potential land-use impacts. This paper demonstrates how reasonable projections based on the literature could require a considerable amount of biomass, equivalent to a 7%–13% increase in global crop demand in 2040. Further research investigating projections for biomass use and the assumptions in these estimates is required to better understand potential land-use impacts from bio-based plastic substitutes. This research is important for informing emerging policies, including the UN Treaty on plastic pollution. Establishing criteria and thresholds for the sustainability of bio-based alternatives, as well as identifying potential negative outcomes, will be crucial to avoid setting out on a path with significant unintended and potentially unavoidable consequences.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 3","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The impacts of plastic, including carbon emissions and plastic pollution, have significant negative impacts on human well-being and the environment. Recent research suggests that these impacts could be mitigated by using biomass to create products with lower carbon emissions or that reduce pollution through biodegradation or composting. As the scale of the plastic problem is substantial, the amount of biomass required for mitigation could be large. Biomass may have benefits, but it also has risks, including the potential to cause significant land-use change. Land-use impacts are widely acknowledged in the literature on plastic mitigation but are often downplayed with assumptions that changes in policies, behaviors, agricultural productivity, and technology can ameliorate the most negative impacts. This paper reviews the assumptions made about land use in the literature on biomass-based plastics and plastic alternatives. Current studies generally make optimistic assumptions about land-use change or have limited ability to account for land-use change impacts. These assumptions, including technological and agricultural advancement, along with idealized feedstock sourcing, minimize potential land-use impacts. This paper demonstrates how reasonable projections based on the literature could require a considerable amount of biomass, equivalent to a 7%–13% increase in global crop demand in 2040. Further research investigating projections for biomass use and the assumptions in these estimates is required to better understand potential land-use impacts from bio-based plastic substitutes. This research is important for informing emerging policies, including the UN Treaty on plastic pollution. Establishing criteria and thresholds for the sustainability of bio-based alternatives, as well as identifying potential negative outcomes, will be crucial to avoid setting out on a path with significant unintended and potentially unavoidable consequences.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.