Backbone NMR resonance assignments for the VP1u N-terminal receptor-binding domain of the human parvovirus pathogen B19

IF 0.8 4区 生物学 Q4 BIOPHYSICS Biomolecular NMR Assignments Pub Date : 2024-06-21 DOI:10.1007/s12104-024-10181-7
Maria Luiza Caldas Nogueira, Renuk Lakshmanan, Gwladys Rivière, Mario Mietzsch, Antonette Bennett, Robert McKenna, Joanna R. Long
{"title":"Backbone NMR resonance assignments for the VP1u N-terminal receptor-binding domain of the human parvovirus pathogen B19","authors":"Maria Luiza Caldas Nogueira,&nbsp;Renuk Lakshmanan,&nbsp;Gwladys Rivière,&nbsp;Mario Mietzsch,&nbsp;Antonette Bennett,&nbsp;Robert McKenna,&nbsp;Joanna R. Long","doi":"10.1007/s12104-024-10181-7","DOIUrl":null,"url":null,"abstract":"<div><p>Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA<sub>2</sub>) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10181-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类副病毒病原体 B19 的 VP1u N 端受体结合域的骨架核磁共振共振分配。
Parvovirus B19(B19V)是一种人类病原体,是婴儿和成人多种疾病的病原体。由于缺乏针对这种病毒的抗病毒药物,治疗方案十分有限。B19V 的小囊膜蛋白有一个独特的 N 末端,名为 VP1u,它对感染至关重要。VP1u 编码一个受体结合结构域(RBD)和一个磷脂酶 A2(PLA2)结构域,前者是宿主细胞进入病毒所必需的,后者则是细胞转运过程中内质体逃逸的关键。这两个结构域都是感染所不可或缺的,因此,RBD 位于病毒的外表面,是抑制 B19V 的药物靶点。迄今为止,还没有任何 Parvovirus VP1u 成分的实验结构信息。在此,我们报告了 B19V RBD 的骨架核磁共振共振分配,并证明它形成了稳定的结构。骨架化学位移与 AlphaFold 预测的结构非常吻合,验证了 RBD 包含三个由紧密转折连接的螺旋。这种 RBD 结构现在可用于进一步的核磁共振研究,包括全长 VP1u 的分配、蛋白质-蛋白质相互作用界面的确定以及针对 RBD 结构域的 B19 抗病毒药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
期刊最新文献
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1