Vimentin, inversely correlating with infiltration of CD8 + T lymphocytes, promotes nuclear translocation of PD-L1 in esophageal squamous cell carcinoma

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular cell research Pub Date : 2024-06-18 DOI:10.1016/j.bbamcr.2024.119781
Yan Liang , Shuo He , Qing Liu , Tao Liu , Yiyi Tan , Tianyuan Peng , Conggai Huang , Xiaomei Lu , Shutao Zheng
{"title":"Vimentin, inversely correlating with infiltration of CD8 + T lymphocytes, promotes nuclear translocation of PD-L1 in esophageal squamous cell carcinoma","authors":"Yan Liang ,&nbsp;Shuo He ,&nbsp;Qing Liu ,&nbsp;Tao Liu ,&nbsp;Yiyi Tan ,&nbsp;Tianyuan Peng ,&nbsp;Conggai Huang ,&nbsp;Xiaomei Lu ,&nbsp;Shutao Zheng","doi":"10.1016/j.bbamcr.2024.119781","DOIUrl":null,"url":null,"abstract":"<div><p>Vimentin has been considered a canonical marker of epithelial-mesenchymal transition (EMT) and is associated with tumor escape characterized by aberrant PD-L1 expression. However, whether there is a relationship between vimentin and PD-L1 in esophageal squamous cell carcinoma (ESCC) remains poorly understood. The immunological involvement of vimentin in ESCC was first analyzed by multiplex immunofluorescence staining in ESCC tissue microarray followed by a xenografted mouse model. <em>In vivo</em>, C57BL/6 mice were subcutaneously transplanted with AKR cells after stable silencing of vimentin. <em>In vivo</em> results showed that in addition to PD-L1 and PD-L2 expression, vimentin expression was inversely correlated with CD8+ T-cell infiltration. Mechanistically, vimentin can directly interact with PD-L1 and promote nuclear translocation of PD-L1 in AKR cells. In addition, SEMA6C, STC-2 and TRAILR2 were identified as cytokines modulated by vimentin. Blockade of STC-2 and TRAILR2 in co-culture with their own primary antibodies was shown to recruit more CD8+ T cells than controls. Together, these data strongly suggest targeting Vimenin to overcome the immune cycle in ESCC.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 7","pages":"Article 119781"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001241","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vimentin has been considered a canonical marker of epithelial-mesenchymal transition (EMT) and is associated with tumor escape characterized by aberrant PD-L1 expression. However, whether there is a relationship between vimentin and PD-L1 in esophageal squamous cell carcinoma (ESCC) remains poorly understood. The immunological involvement of vimentin in ESCC was first analyzed by multiplex immunofluorescence staining in ESCC tissue microarray followed by a xenografted mouse model. In vivo, C57BL/6 mice were subcutaneously transplanted with AKR cells after stable silencing of vimentin. In vivo results showed that in addition to PD-L1 and PD-L2 expression, vimentin expression was inversely correlated with CD8+ T-cell infiltration. Mechanistically, vimentin can directly interact with PD-L1 and promote nuclear translocation of PD-L1 in AKR cells. In addition, SEMA6C, STC-2 and TRAILR2 were identified as cytokines modulated by vimentin. Blockade of STC-2 and TRAILR2 in co-culture with their own primary antibodies was shown to recruit more CD8+ T cells than controls. Together, these data strongly suggest targeting Vimenin to overcome the immune cycle in ESCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与 CD8 + T 淋巴细胞浸润成反比的波形蛋白可促进食管鳞状细胞癌中 PD-L1 的核易位。
波形蛋白一直被认为是上皮-间质转化(EMT)的典型标志物,与以 PD-L1 异常表达为特征的肿瘤逃逸有关。然而,人们对食管鳞状细胞癌(ESCC)中的波形蛋白与 PD-L1 之间是否存在关系仍然知之甚少。我们首先通过ESCC组织芯片的多重免疫荧光染色,然后通过异种移植小鼠模型分析了波形蛋白在ESCC中的免疫学参与。在体内,C57BL/6小鼠皮下移植了稳定沉默波形蛋白后的AKR细胞。体内研究结果表明,除了PD-L1和PD-L2的表达外,波形蛋白的表达还与CD8+ T细胞浸润成反比。从机制上讲,波形蛋白能直接与 PD-L1 相互作用,并促进 PD-L1 在 AKR 细胞中的核转位。此外,SEMA6C、STC-2 和 TRAILR2 也被确定为受波形蛋白调节的细胞因子。与对照组相比,在与 STC-2 和 TRAILR2 的一抗共培养中阻断这两种细胞可招募更多的 CD8+ T 细胞。总之,这些数据有力地表明,以Vimenin为靶点可以克服ESCC的免疫循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
期刊最新文献
ELAVL1 governs breast cancer malignancy by regulating cell stemness GALNT6, transcriptionally inhibited by KLF9, promotes osteosarcoma progression by increasing EFEMP1 expression via O-glycosylation modification. The association of ABC proteins with multidrug resistance in cancer Iron‑sulfur cluster biogenesis and function in Apicomplexa parasites Targeting SphK1/S1PR3 axis ameliorates sepsis-induced multiple organ injury via orchestration of macrophage polarization and glycolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1