The role of Nir2, a lipid-transfer protein, in regulating endothelial cell functions

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular cell research Pub Date : 2025-03-01 DOI:10.1016/j.bbamcr.2025.119926
Zydrune Polianskyte-Prause , Amita Arora , Juuso H. Taskinen , Vaishali Chaurasiya , Salla Keskitalo , Antti Tuhkala , Ida Hilska , Markku Varjosalo , Vesa M. Olkkonen
{"title":"The role of Nir2, a lipid-transfer protein, in regulating endothelial cell functions","authors":"Zydrune Polianskyte-Prause ,&nbsp;Amita Arora ,&nbsp;Juuso H. Taskinen ,&nbsp;Vaishali Chaurasiya ,&nbsp;Salla Keskitalo ,&nbsp;Antti Tuhkala ,&nbsp;Ida Hilska ,&nbsp;Markku Varjosalo ,&nbsp;Vesa M. Olkkonen","doi":"10.1016/j.bbamcr.2025.119926","DOIUrl":null,"url":null,"abstract":"<div><div>Lipid transfer proteins regulate the metabolism of phosphoinositides with key roles in cell signaling, membrane and actin dynamics, intracellular trafficking, and diseases. Nir2/PITPNM1 acts as a cellular phosphatidylinositol/phosphatidic acid (PI/PA) exchanger that maintains phosphoinositide signaling at the plasma membrane (PM) and endoplasmic reticulum (ER) membrane contact sites. Here, we assessed the function of Nir2 in human umbilical vein endothelial cells (HUVECs), by analyzing the impacts of Nir2 knockdown (KD) on angiogenesis in vitro, cell viability, proliferation, migration, actin cytoskeletal regulation and vascular endothelial growth factor (VEGF)-mediated downstream cellular signaling pathways. We show that Nir2 KD inhibits angiogenic tube formation in HUVECs, reduces cell viability, proliferation and migration, as well as diminishes actin stress fibers, while Nir2 overexpression increases cell viability and overexpression of an shRNA-resistant Nir2 construct rescues it. Nir2 KD results in decreased activity of AKT and ERK signaling pathways upon VEGF stimulus, plausibly underlying the observed defects in proliferation, migration and angiogenesis. In addition, our interactome analysis confirmed an interaction of Nir2 with the membrane contact site organizer VAPA (vesicle-associated membrane protein-associated protein A), validated by co-immunoprecipitation and co-localization analyses. VAPA KD inhibited angiogenesis similar to that of Nir2, and double KD of the two tended to have even stronger inhibitory effect. A number of other tentative partners of Nir2 were detected; according to STRING analysis, these likely represent indirect interactions driven by a complex with VAPA. The present findings unravel new avenues to understanding the molecular mechanisms by which Nir2 regulates key endothelial functions such as angiogenesis.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 3","pages":"Article 119926"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016748892500031X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid transfer proteins regulate the metabolism of phosphoinositides with key roles in cell signaling, membrane and actin dynamics, intracellular trafficking, and diseases. Nir2/PITPNM1 acts as a cellular phosphatidylinositol/phosphatidic acid (PI/PA) exchanger that maintains phosphoinositide signaling at the plasma membrane (PM) and endoplasmic reticulum (ER) membrane contact sites. Here, we assessed the function of Nir2 in human umbilical vein endothelial cells (HUVECs), by analyzing the impacts of Nir2 knockdown (KD) on angiogenesis in vitro, cell viability, proliferation, migration, actin cytoskeletal regulation and vascular endothelial growth factor (VEGF)-mediated downstream cellular signaling pathways. We show that Nir2 KD inhibits angiogenic tube formation in HUVECs, reduces cell viability, proliferation and migration, as well as diminishes actin stress fibers, while Nir2 overexpression increases cell viability and overexpression of an shRNA-resistant Nir2 construct rescues it. Nir2 KD results in decreased activity of AKT and ERK signaling pathways upon VEGF stimulus, plausibly underlying the observed defects in proliferation, migration and angiogenesis. In addition, our interactome analysis confirmed an interaction of Nir2 with the membrane contact site organizer VAPA (vesicle-associated membrane protein-associated protein A), validated by co-immunoprecipitation and co-localization analyses. VAPA KD inhibited angiogenesis similar to that of Nir2, and double KD of the two tended to have even stronger inhibitory effect. A number of other tentative partners of Nir2 were detected; according to STRING analysis, these likely represent indirect interactions driven by a complex with VAPA. The present findings unravel new avenues to understanding the molecular mechanisms by which Nir2 regulates key endothelial functions such as angiogenesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
期刊最新文献
AXL kinase inhibitor exhibits antitumor activity by inducing apoptotic cell death in triple-negative breast cancer cells A small interfering RNA inhibits lung fibroblast-myofibroblast differentiation via simultaneously knockingdown CELF1 and activating RIG-I signalling The role of Nir2, a lipid-transfer protein, in regulating endothelial cell functions Lactylation and regulated cell death Aberrant miRNA expression and protein arginine methyltransferase 5 (PRMT5) in cancer: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1