Omario A M Neunie, Wardah Rabbani, David Baker, Emma S Chambers, Paul E Pfeffer, Angray S Kang
{"title":"Immunogenicity of biologics used in the treatment of asthma.","authors":"Omario A M Neunie, Wardah Rabbani, David Baker, Emma S Chambers, Paul E Pfeffer, Angray S Kang","doi":"10.3233/HAB-240002","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Asthma is a major global disease affecting adults and children, which can lead to hospitalization and death due to breathing difficulties. Although targeted monoclonal antibody therapies have revolutionized treatment of severe asthma, some patients still fail to respond. Here we critically evaluate the literature on biologic therapy failure in asthma patients with particular reference to anti-drug antibody production, and subsequent loss of response, as the potential primary cause of drug failure in asthma patients.</p><p><strong>Recent findings: </strong>Encouragingly, asthma in most cases responds to treatment, including the use of an increasing number of biologic drugs in moderate to severe disease. This includes monoclonal antibody inhibitors of immunoglobulin E and cytokines, including interleukin 4, 5, or 13 and thymic stromal lymphopoietin. These limit mast cell and eosinophil activity that cause the symptomatic small airways obstruction and exacerbations.</p><p><strong>Summary: </strong>Despite humanization of the antibodies, it is evident that benralizumab; dupilumab; mepolizumab; omalizumab; reslizumab and tezepelumab all induce anti-drug antibodies to some extent. These can contribute to adverse events including infusion reactions, serum sickness, anaphylaxis and potentially disease activity due to loss of therapeutic function. Monitoring anti-drug antibodies (ADA) may allow prediction of future treatment-failure in some individuals allowing treatment cessation and switching therefore potentially limiting disease breakthrough.</p>","PeriodicalId":53564,"journal":{"name":"Human Antibodies","volume":" ","pages":"121-128"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/HAB-240002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Asthma is a major global disease affecting adults and children, which can lead to hospitalization and death due to breathing difficulties. Although targeted monoclonal antibody therapies have revolutionized treatment of severe asthma, some patients still fail to respond. Here we critically evaluate the literature on biologic therapy failure in asthma patients with particular reference to anti-drug antibody production, and subsequent loss of response, as the potential primary cause of drug failure in asthma patients.
Recent findings: Encouragingly, asthma in most cases responds to treatment, including the use of an increasing number of biologic drugs in moderate to severe disease. This includes monoclonal antibody inhibitors of immunoglobulin E and cytokines, including interleukin 4, 5, or 13 and thymic stromal lymphopoietin. These limit mast cell and eosinophil activity that cause the symptomatic small airways obstruction and exacerbations.
Summary: Despite humanization of the antibodies, it is evident that benralizumab; dupilumab; mepolizumab; omalizumab; reslizumab and tezepelumab all induce anti-drug antibodies to some extent. These can contribute to adverse events including infusion reactions, serum sickness, anaphylaxis and potentially disease activity due to loss of therapeutic function. Monitoring anti-drug antibodies (ADA) may allow prediction of future treatment-failure in some individuals allowing treatment cessation and switching therefore potentially limiting disease breakthrough.
期刊介绍:
Human Antibodies is an international journal designed to bring together all aspects of human hybridomas and antibody technology under a single, cohesive theme. This includes fundamental research, applied science and clinical applications. Emphasis in the published articles is on antisera, monoclonal antibodies, fusion partners, EBV transformation, transfections, in vitro immunization, defined antigens, tissue reactivity, scale-up production, chimeric antibodies, autoimmunity, natural antibodies/immune response, anti-idiotypes, and hybridomas secreting interesting growth factors. Immunoregulatory molecules, including T cell hybridomas, will also be featured.