{"title":"Simulation research on Tai Chi movement posture resolution based on multi-MEMS sensor combination","authors":"Wang Benzheng","doi":"10.1016/j.measen.2024.101256","DOIUrl":null,"url":null,"abstract":"<div><p>The combined system based on multiple MEMS sensors is a miniature measurement system used for dynamic output and display of 3D information about the user's posture. It is mainly used for various Tai Chi movement posture calculation simulation research, wearable devices, etc. This article explores MEMS sensor technology, focusing on MEMS sensor data processing, Tai Chi movement position calculation and fusion calculation positioning algorithm. Due to the high noise characteristics of MEMS sensor devices, time series analysis is used to model MIMU signals and Kalman filtering is optimized. As a research field, simulation of Tai Chi movement appears in the intersection of biomechanics, robotics and computer science. The purpose is to create a computer model to simulate the natural and real body movements of the human body under certain conditions. In addition to creating special effects, Tai Chi movement posture calculation simulation can also be used for operation training and research on body structure. This article first introduces the typical applications of several MEMS sensor combinations, and then introduces the key technology of studying Tai Chi movement simulation. The kinematics and mechanics data of Tai Chi are obtained using biomechanical measurement technology, while the individual simulation of Tai Chi dynamics is realized in a certain mode of the machine. By creating a kinematic model of the human upper limb, and finally creating a flexible machine that imitates the human upper limb, to analyze the kinematic characteristics of the human upper limb, and cleverly realize the imitation of active interaction, the simulation of human movement and the solution of Tai Chi movement posture Simulation.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"34 ","pages":"Article 101256"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002320/pdfft?md5=c8f0cfa5d42aa6dcb923355845d264ce&pid=1-s2.0-S2665917424002320-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The combined system based on multiple MEMS sensors is a miniature measurement system used for dynamic output and display of 3D information about the user's posture. It is mainly used for various Tai Chi movement posture calculation simulation research, wearable devices, etc. This article explores MEMS sensor technology, focusing on MEMS sensor data processing, Tai Chi movement position calculation and fusion calculation positioning algorithm. Due to the high noise characteristics of MEMS sensor devices, time series analysis is used to model MIMU signals and Kalman filtering is optimized. As a research field, simulation of Tai Chi movement appears in the intersection of biomechanics, robotics and computer science. The purpose is to create a computer model to simulate the natural and real body movements of the human body under certain conditions. In addition to creating special effects, Tai Chi movement posture calculation simulation can also be used for operation training and research on body structure. This article first introduces the typical applications of several MEMS sensor combinations, and then introduces the key technology of studying Tai Chi movement simulation. The kinematics and mechanics data of Tai Chi are obtained using biomechanical measurement technology, while the individual simulation of Tai Chi dynamics is realized in a certain mode of the machine. By creating a kinematic model of the human upper limb, and finally creating a flexible machine that imitates the human upper limb, to analyze the kinematic characteristics of the human upper limb, and cleverly realize the imitation of active interaction, the simulation of human movement and the solution of Tai Chi movement posture Simulation.