A simple and inexpensive design of radioactive source for accurate level and height gauging in petrochemical industries

Q4 Engineering Measurement Sensors Pub Date : 2025-02-05 DOI:10.1016/j.measen.2025.101817
S.Z. Islami rad , R. Gholipour Peyvandi
{"title":"A simple and inexpensive design of radioactive source for accurate level and height gauging in petrochemical industries","authors":"S.Z. Islami rad ,&nbsp;R. Gholipour Peyvandi","doi":"10.1016/j.measen.2025.101817","DOIUrl":null,"url":null,"abstract":"<div><div>Radiation sources are used for measurement and control of industrial processes, determining the height of materials inside the vessel, analyzing the composition and structure of materials, and detecting defects in industrial processes due to the complexity of the production process. In petrochemical industries, the height of urea in a vessel can be measured using the nuclear level gauging method, which is a non-destructive technique. Therefore, the energy of the gamma emitting source, the design, and arrangement of the source geometry (including the point or rod sources), and the detector material (NaI (Tl) crystal or plastic scintillator) are crucial parameters. In this research, a nuclear level gauge, including the source, detector, and reactor containing urea and gases at high temperatures and pressures, was simulated by MCNPX Monte Carlo code and the results were compared and validated with experimental values. Then, the detector's response was evaluated and optimized based on the different arrangements of the radioactive source and its distances, as well as the type and geometry of the detector, and the best arrangement was selected. The comparison of the simulation results and the resulting analysis indicated that using point sources at specific distances (three points) instead of rod sources is a viable alternative due to its simpler structure, higher accuracy and stability, and lower production cost compared to the high cost of rod sources. Additionally, for accurate level and height gauging, rod detectors should be replaced with point detectors.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"38 ","pages":"Article 101817"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266591742500011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Radiation sources are used for measurement and control of industrial processes, determining the height of materials inside the vessel, analyzing the composition and structure of materials, and detecting defects in industrial processes due to the complexity of the production process. In petrochemical industries, the height of urea in a vessel can be measured using the nuclear level gauging method, which is a non-destructive technique. Therefore, the energy of the gamma emitting source, the design, and arrangement of the source geometry (including the point or rod sources), and the detector material (NaI (Tl) crystal or plastic scintillator) are crucial parameters. In this research, a nuclear level gauge, including the source, detector, and reactor containing urea and gases at high temperatures and pressures, was simulated by MCNPX Monte Carlo code and the results were compared and validated with experimental values. Then, the detector's response was evaluated and optimized based on the different arrangements of the radioactive source and its distances, as well as the type and geometry of the detector, and the best arrangement was selected. The comparison of the simulation results and the resulting analysis indicated that using point sources at specific distances (three points) instead of rod sources is a viable alternative due to its simpler structure, higher accuracy and stability, and lower production cost compared to the high cost of rod sources. Additionally, for accurate level and height gauging, rod detectors should be replaced with point detectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Vehicle maneuver recognition and correction algorithm for road quality measurement system optimization A simple and inexpensive design of radioactive source for accurate level and height gauging in petrochemical industries Pneumonia detection from X-ray images using federated learning–An unsupervised learning approach Number plate recognition smart parking management system using IoT Collaboration of clustering and classification techniques for better prediction of severity of heart stroke using deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1