Raquel Nicotra, Catrin Lutz, Hendrik A Messal, Jos Jonkers
{"title":"Rat Models of Hormone Receptor-Positive Breast Cancer.","authors":"Raquel Nicotra, Catrin Lutz, Hendrik A Messal, Jos Jonkers","doi":"10.1007/s10911-024-09566-0","DOIUrl":null,"url":null,"abstract":"<p><p>Hormone receptor-positive (HR<sup>+</sup>) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR<sup>+</sup> BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR<sup>+</sup> BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR<sup>+</sup> BC. To date, six different types of rat models of HR<sup>+</sup> BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR<sup>+</sup> BC. This review provides a comprehensive overview of all published models to date.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"12"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-024-09566-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
激素受体阳性(HR+)乳腺癌(BC)是全球妇女最常见的乳腺癌类型,占所有侵袭性病例的 70-80%。激素受体阳性乳腺癌患者通常接受内分泌治疗,但内在或获得性耐药性是一个常见问题,这使得激素受体阳性乳腺癌成为研究的热点。尽管如此,这种恶性肿瘤仍然缺乏足够的体外和体内模型来研究其发病和进展以及对内分泌治疗的反应和耐药性。目前还没有完全模拟人类疾病的小鼠模型,但大鼠乳腺肿瘤模型是克服这一限制的一个很有前途的替代方案。与小鼠相比,大鼠在乳腺结构、肿瘤病变的导管起源和激素依赖状态方面与人类更为相似。此外,大鼠可发生与人类 HR+ BC 相似的自发性或诱导性乳腺肿瘤。迄今为止,已建立了六种不同类型的 HR+ BC 大鼠模型。这些模型包括自发性模型、致癌物质诱导模型、移植模型、激素诱导模型、辐射诱导模型和基因工程大鼠乳腺肿瘤模型。每种模型在研究 HR+ BC 方面都有各自的优缺点和实用性。本综述全面概述了迄今为止已发表的所有模型。
期刊介绍:
Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function.
Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.