{"title":"Heterogeneous Thresholds, Social Ranking, and the Emergence of Vague Categories.","authors":"Jonathan Lawry","doi":"10.1162/artl_a_00442","DOIUrl":null,"url":null,"abstract":"<p><p>Threshold models in which an individual's response to a particular state of the world depends on whether an associated measured value exceeds a given threshold are common in a variety of social learning and collective decision-making scenarios in both natural and artificial systems. If thresholds are heterogeneous across a population of agents, then graded population level responses can emerge in a context in which individual responses are discrete and limited. In this article, I propose a threshold-based model for social learning of shared quality categories. This is then combined with the voting model of fuzzy categories to allow individuals to learn membership functions from their peers, which can then be used for decision-making, including ranking a set of available options. I use agent-based simulation experiments to investigate variants of this model and compare them to an individual learning benchmark when applied to the ranking problem. These results show that a threshold-based approach combined with category-based voting across a social network provides an effective social mechanism for ranking that exploits emergent vagueness.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-16"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00442","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Threshold models in which an individual's response to a particular state of the world depends on whether an associated measured value exceeds a given threshold are common in a variety of social learning and collective decision-making scenarios in both natural and artificial systems. If thresholds are heterogeneous across a population of agents, then graded population level responses can emerge in a context in which individual responses are discrete and limited. In this article, I propose a threshold-based model for social learning of shared quality categories. This is then combined with the voting model of fuzzy categories to allow individuals to learn membership functions from their peers, which can then be used for decision-making, including ranking a set of available options. I use agent-based simulation experiments to investigate variants of this model and compare them to an individual learning benchmark when applied to the ranking problem. These results show that a threshold-based approach combined with category-based voting across a social network provides an effective social mechanism for ranking that exploits emergent vagueness.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.