Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2024-01-08 DOI:10.1093/ismejo/wrae119
Shasha Wang, Lijing Jiang, Zhuoming Zhao, Zhen Chen, Jun Wang, Karine Alain, Liang Cui, Yangsheng Zhong, Yongyi Peng, Qiliang Lai, Xiyang Dong, Zongze Shao
{"title":"Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments.","authors":"Shasha Wang, Lijing Jiang, Zhuoming Zhao, Zhen Chen, Jun Wang, Karine Alain, Liang Cui, Yangsheng Zhong, Yongyi Peng, Qiliang Lai, Xiyang Dong, Zongze Shao","doi":"10.1093/ismejo/wrae119","DOIUrl":null,"url":null,"abstract":"<p><p>Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae119","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红树林沉积物中的化学自养型重氮生物在暗固氮过程中占主导地位。
重氮微生物通过缓解氮限制来调节海洋生产力。迄今为止,人们普遍认为化石自养细菌是寡营养海洋和陆地生态系统中的主要重氮营养体。然而,化石自养菌对富含有机物生境中固氮作用的贡献仍不清楚。在此,我们利用元基因组学和元转录物组学方法,结合培养试验,研究了漳州红树林沉积物中重氮营养体的多样性、分布和活性。理化分析表明,所研究的红树林沉积物是典型的富碳、富硫、限氮和低氧化还原的海洋生态系统。这些沉积物中的氮酶基因系统发育种类繁多,包括 I-III 组和 VII-VIII 组。意想不到的是,0-18 厘米沉积层中最主要、最活跃的固氮菌是多种多样的化学溶解自养类群,包括弯曲杆菌(Campylobacteria)、伽马蛋白杆菌(Gammaproteobacteria)、Zetaproteobacteria 和 Thermodesulfovibrionia。与此相反,18-20 厘米沉积层主要是来自化石自养类群脱硫菌群和卤化菌群的活性重氮菌。对 MAGs 的进一步分析表明,主要的化学溶解自养型微生物可以通过将氢、还原硫和铁的氧化与氧、硝酸盐和硫的还原结合起来进行固氮。培养实验进一步证明,化学溶解自养弯曲杆菌成员具有由氢和硫氧化驱动的固氮能力。活性测量结果证实,栖息在红树林沉积物中的重氮营养体优先从各种还原无机化合物中吸收能量,而不是从有机物中吸收能量。总之,我们的研究结果表明,红树林沉积物中的主要固氮者是化学溶解自养型而非异养型。这项研究强调了化石自养生物在碳主导生态系统中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
Targeted prebiotic application of gluconic acid-containing oligosaccharides promotes Faecalibacterium growth through microbial cross-feeding networks. Proteomic evidence for aerobic methane production in groundwater by methylotrophic Methylotenera. Plasmids encode and can mobilize onion pathogenicity in Pantoea agglomerans. Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. Strain phylogroup and environmental constraints shape Escherichia coli dynamics and diversity over a 20-year human gut time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1